
A Brief Analysis of the
Apollo Guidance Computer

Charles Averill
charles.averill@utdallas.edu

Fall 2021

ar
X

iv
:2

20
1.

08
23

0v
1 

 [
cs

.O
H

] 
 6

 J
an

 2
02

2



I Overview

The AGC1 was designed with the sole pur-
pose of providing navigational guidance and
spacecraft control during the Apollo program
throughout the 1960s and early 1970s. The
AGC sported 72kb of ROM, 4kb of RAM,
and a whopping 14,245 FLOPS, roughly 30
million times fewer than the computer this
report is being written on.

These limitations are what make the AGC
so interesting, as its programmers had to ra-
tion each individual word of memory due to
the bulk of memory technology of the time.
Despite these limitations (or perhaps due to
them), the AGC was highly optimized, and
arguably the most advanced computer of its
time, as its computational power was only
matched in the late 1970s by computers like
the Apple II.

It is safe to say that the AGC had no in-
tended market, and was explicitly designed
to enhance control of the Apollo Command
Module and Apollo Lunar Module. The AGC
was not entirely internal to NASA, however,
and was designed in MIT’s Instrumentation
Laboratory, and manufactured by Raytheon,
a weapons and defense contractor.

II Analysis

II.I ROM

The Read-Only Memory (ROM) of the AGC
is one of its defining features, and is surpris-
ingly well-known even outside of groups that
focus on ancient computing. This is primarily
due to the distinctiveness of the chosen imple-
mentation: Core Rope Memory (CRM).

In short, CRM involves the conditional
wrapping of wire around magnetized ferrite

1This report will cover the Block II iteration of
the AGC. The first iteration, Block I, was not used
in lunar flight.

cores in order to represent a 1 or a 0. If the
wire passes through a core, that section of
wire represents a 1, and if the wire passes
around the core, that section of wire repre-
sents a 0. This memory scheme is incredibly
space-efficient, as cores can be used by up to
24 wires, resulting in a dense mass of looping
wire that spawned the name ”rope”.

Figure 1: Core Rope Memory

Here, fig. 1 shows an example of a simple
CRM implementation that stores two bytes,
and table 1 displays each line’s value.

I II III IV

A 0 1 0 0
B 0 0 1 0
C 0 1 1 0
D 1 0 0 1

Table 1: Truth Table for Fig. 1

Although CRM was light, efficient, and re-
liable, it had a major drawback: it was hand-
woven. Because of this, single subroutines
could take months to weave, and any error
would be either irreparable or at the very
least a huge setback.

The AGC used 72kb of ROM, however the
15-bit architecture did not support this many
addresses. To absolve this issue, the mem-
ory was arranged into 36 memory banks that
could be accessed one-at-a-time.

1



II.II RAM

The Random Access Memory2 (RAM) of the
AGC functions under a similar concept as its
ROM, using wires threaded through ferrite
cores to represent bits. However, instead of
threaded through/around representing a 1 or
0, each ferrite core is magnetized in one way
to represent a 1, and can be magnetized in
the opposite direction to represent a 0. This
implementation is known as Magnetic Core
Memory (MCM).

As all RAM is, MCM is designed to be read
from and written to. Therefore, each core is
threaded by a ”Sense Line” that reads the
polarization of the core’s magnetic field, and
a ”Write Line” that can polarize the core ei-
ther way. Cores are arranged in a grid, so
one selection wire for each row and column
are threaded through their respective cores.
This threading scheme is illustrated in fig. 2.

Figure 2: Magnetic Core Memory

Although MCM was easier to manufacture
(it was a standard erasable memory imple-
mentation at the time), its most significant
limitation was that each bit of storage had a
one-to-one mapping to a ferrite core. Cores
were significantly heavier than wire and could
not be reused for multiple bits, so the AGC’s
erasable memory held 18x less data than its
ROM. Similar to its ROM, the AGC’s RAM
was arranged into 8 memory banks to resolve
the 15-bit addressing issue.

2Also referred to as ”erasable memory”

The weight of the cores therefore had an
indirect negative effect on the design of the
AGC’s software as well. Programmers were
forced to optimize down to each individual
bit in order to be able to store all necessary
values in memory.

II.III Architecture

The AGC used a ”15 + 1”-bit word size, with
the 16th bit being a parity bit. Any logi-
cal operation in the CPU explicitly operates
on the 15 logical bits and ignores the parity
bit. For error checking, the parity bit was set
to a 1 or 0 such that the number of 1s in a
word was odd, therefore if the number of 1s in
a word was even, either data or instruction,
then that word was corrupted.

In modern computers, registers are imple-
mented as flip-flops, a very expensive form
of memory that typically requires at least 20
transistors per bit. This is less of an issue in
the era of transistors with sizes on the order
of 2nm, but in the 1960s transistors were far
larger. Therefore, only the 8 most important
registers, the ”central registers” were man-
ufactured out of flip-flops, and the rest were
memory mapped to MCM. Each of these cen-
tral registers’ intended purpose is described
below.

• A (00008) - The ”accumulator”, a
general-purpose register used by almost
all operations, contains data for most
arithmetic and logical functions

• L (00018) - The ”lower product regis-
ter”, L is a general-purpose register, how-
ever it is always used in conjunction with
A when double precision is required

• Q (00028) - Q is used to store the re-
turn address of a function. As the AGC
had no stack, nested functions were in-
herently prohibited unless Q’s value was
stored in another register

2



• EB (00038) - EB stores a 3-bit field that
determines which of the 8 RAM banks
would be memory-mapped to the ad-
dresses 14008-17778

• FB (00048) - FB serves the same func-
tion as EB, but uses a 5-bit field to map
a ROM bank to the addresses 20008 −
37778

• Z (00058) - Z stores the program
counter, a value that contains the ad-
dress of the next instruction to be ex-
ecuted once the current one completes

• BB (00068) - BB stores both a 3-bit field
and a 5-bit field that allow a RAM bank
and a ROM bank to be selected simulta-
neously

• Unnamed (00078) - This register is hard-
wired to the value 0, and is therefore uti-
lized for reinitializing registers for com-
putation. Note: this register is not im-
plemented as a flip-flop but is still con-
sidered a central register

The AGC also used 40 more registers that
were memory-mapped to RAM, but were not
general-purpose and instead were used only
for specific functions.

II.IV Instruction Set

The Block I AGC had an astonishing 12 in-
structions overall. These instructions covered
basic arithmetic, conditional and uncondi-
tional jumps, a boolean AND, memory man-
agement, and even the ability to modify the
upcoming instruction by adding a value in a
register to its opcode.

Block II introduced 41 more instructions
that provided significantly more functional-
ity, including more complicated and opti-
mized mathematical and logical functions,
better interrupt handling, function returns,

and more IO capabilities. Interestingly, the
AGC’s programmers also dedicated a signifi-
cant amount of memory into designing an in-
terpreter that could execute instructions not
explicitly supported by the CPU.

1 IGNITION

2 ; INSURE ENGONFLG IS SET.

3 CS FLAGWRD5

4 MASK ENGONBIT

5 ADS FLAGWRD5

6 ; TURN ON THE ENGINE.

7 CS PRIO30

8 EXTEND

9 RAND DSALMOUT

10 AD BIT13

11 EXTEND

12 WRITE DSALMOUT

13 ; SET TEVENT FOR DOWNLINK

14 EXTEND

15 DCA TIME2

16 DXCH TEVENT

17

18 ; UPDATE TIG USING

19 ; TGO FROM S40.13

20 EXTEND

21 DCA TGO

22 DXCH TIG

23 EXTEND

24 DCA TIME2

25 DAS TIG

Listing 1: AGC Ignition Snippet

An example of the AGC’s code is provided
in Listing 1, specifically the beginning of the
engine ignition subroutine.

Lines 3-5 load the 1’s complement of flag-
word 5 into the accumulator, perform a log-
ical AND on the accumulator with the ”En-
gine On” bit, then add the result back to flag-
word 5 and save that sum back to its mem-
ory location. Here, flagword 5 and Engine
On are individual bits that represent ”flags”
or ”switches” that control simple boolean

3



states. Essentially, this section of code con-
firms that the flag representing the state of
the engine is on (this is also concisely summed
up in the comment above).

The following section of code ”TURN ON
THE ENGINE.” is harder to break down, as
it uses the poorly-documented DSALMOUT
IO register. However, the comment leads us
to believe that in line 9, we ”Read AND”
mask the input register into the accumulator,
add the contents of another undocumented
BIT13, and write back out to DSALMOUT.
It can be concluded that DSALMOUT is
a memory-mapped IO register that controls
power to the engine.

Following this section, we initialize some
values for ”DOWNLINK”, or data transfer
from the Lunar Command Module to Ground
Control, and finally we clear and update some
double-precision values (also undocumented).

II.V IO

Aside from Core Rope Memory, the AGC’s
other defining feature is its user interface,
DSKY (DiSplay and KeYboard).

Fig. 3 shows a diagram of DSKY’s layout,
obviously a long way from our displays and
keyboards of today.

The left section held light indicators for
various states of the AGC, including whether
or not it was at standby, whether it was in the
middle of an uplink, status of the spacecraft,
etc.

The right section held 7-segment displays
that allowed the user to monitor values such
as the spacecraft’s velocity, required burn
times, etc. More importantly, it displayed
the current program being run and the data
being operated on. For ease of understand-
ing for the astronauts, programs were called
”verbs”, and data were called ”nouns”. The
keyboard allowed astronauts to select a verb
to execute and a noun to process, as well as
input values to use for computations.

A primitive operating system called
”The Executive” would handle all of this in-
put and use it to schedule programs, reset
exceptions, and interact with the spacecraft.

DSKY, along with the AGC’s other in-
put devices such as an accelerometer or ther-
mometer, were memory-mapped to registers
in RAM for use in computation.

Figure 3: DSKY Interface

4



III Reviews

III.I

”In Defense of the Apollo Program’s
Guidance Computer” - John Loeffler

The phrase ”your calculator is more power-
ful than the computer that piloted the Apollo
spacecraft” is somewhat common, and many
people who hear it would agree with the state-
ment.

Loeffler partially disagrees; while the state-
ment is technically true, it completely ignores
the immense amount of engineering that went
into the AGC. Most of its technology was
completely novel, and many of its software
perks were ”ahead of [their] time by decades”.
To claim the AGC was not a powerful com-
puter abuses the definition of the word.

III.II

”Rebooting a 50 Year Old Computer
- Making The Apollo Guidance Com-
puter Work Again” - Scott Manley

This repair video starts off with an excel-
lent review of the AGC’s significance. Manley
reiterates common points about the ingenuity
of the technology within the AGC, but brings
special attention to its impact on technology
as a whole.

During the development of Block I, silicon
transistors and embedded circuit technology
became feasible enough to use in computers.
Block I was able to transition from racks of
large-scale transistors hand-soldered together
to a smaller implementation. As silicon tech-
nology became essential to keeping the AGC
small, there is evidence to believe that the
demand for silicon transistors generated by
NASA during the AGC’s design period was
so great that it kickstarted general-purpose
computing and personal computing in the
early 1970s. Therefore, our modern comput-
ers and phones have direct ties to the AGC.

III.III

”The Real Story Behind the Apollo 11
Computer Error” - Wall Street Journal

When descending to the surface of the
Moon for the first time, the AGC flashed
an error code that perplexed astronauts and
Ground Control. WSJ interviews Don Eyles,
the MIT Instrumentation Laboratory em-
ployee who wrote the code to control the Lu-
nar descent.

Although the AGC was erroring without
a known cause, Ground Control soon dis-
covered that it was still executing critical
guidance and maneuvering programs, and the
Lunar Module was able to successfully land
without a hitch. WSJ claims that this feat
attests to the robustness of the AGC’s soft-
ware, that it was able to survive an unknown
issue during one of the most critical points of
the mission.

It was later discovered that the issue was
not even within the AGC, but that a radar
dish had been activated, filling RAM with un-
needed data. Despite this, the AGC would
reboot after dumping its memory, and upon
booting again would resume from where it left
off. This is a feature that is uncommon even
in much of today’s software, so the fact that
it was not only present but functional in a
computer from the 1960s is an incredible feat
of engineering.

5



IV Technical Terms

• AGC

Apollo Guidance Computer

• Boolean

A value that is either True or False, rep-
resented as a 1 or 0 in a computer

• FLOPS

”Float Operations Per Second” - a unit
of measurement for measuring computer
speed based on the number of single-
precision multiplications and additions
the computer can compute in one second

• Memory-Mapped

Memory-Mapping is a technique that
maps some input to a given memory ad-
dress. For example, memory-mapped
keyboard input might place the ASCII
value of the last key typed into memory
address 0xABCD

• Opcode

An opcode is a sequence of bits unique
to an instruction that tell the CPU how
to execute the instruction

• Operating System

An Operating System, or OS, is a central
piece of software in a computer that con-
trols everything the user interacts with,
including but not limited to program ex-
ecution, keyboard input, display, etc.

• Parity Bit

A parity bit is a single bit of data at
the end of each word of memory used for
error detection.

• RAM

”Random Access Memory” - Computer
memory that can be read from and writ-
ten to. In the AGC, this was imple-
mented with Magnetic Core Memory and
is called ”erasable memory” in documen-
tation

• ROM

”Read-Only Memory” - Computer mem-
ory that can be read from, but not writ-
ten to. In the AGC, this was imple-
mented with Core Rope Memory

• User Interface

The User Interface, or UI, is what the
user interacts with when operating a
computer. This includes input devices
such as a mouse and keyboard, and out-
put devices such as a display.

• Word

A word is a unit of measurement defined
by the minimum amount of bits the CPU
may operate on. In the AGC, word size
is 16, 15 bits for data and 1 parity bit.

6



V References

• O’Brien, F. (2010). The apollo guidance computer: Architecture and operation.
Springer.

• Hall, E. C. (1963, May). General Design Characteristics of the Apollo Guidance Com-
puter. Boston; MIT Instrumentation Laboratory.
http://klabs.org/history/history_docs/mit_docs/1009.pdf

• Blair-Smith, H. (1966). AGC4 Memo # 9 - Block II Instructions. Boston; MIT
Instrumentation Laboratory.
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/apollo/

public/archive/1689.pdf

• Burkey, R. (n.d.). Programmer’s Manual - Block 2 AGC Assembly Language. Virtual
AGC assembly-Language manual. Retrieved December 2, 2021.
https://www.ibiblio.org/apollo/assembly_language_manual.html.

7

http://klabs.org/history/history_docs/mit_docs/1009.pdf
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/apollo/public/archive/1689.pdf
http://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/apollo/public/archive/1689.pdf
https://www.ibiblio.org/apollo/assembly_language_manual.html

	I Overview
	II Analysis
	II.I ROM
	II.II RAM
	II.III Architecture
	II.IV Instruction Set
	II.V IO

	III Reviews
	III.I 
	III.II 
	III.III 

	IV Technical Terms
	V References

