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Summary  

For junior/senior/graduate-level courses in Computer Organization and Architecture in the Computer 
Science and Engineering departments.  

This text provides a clear, comprehensive presentation of the organization and architecture of modern-
day computers, emphasizing both fundamental principles and the critical role of performance in driving 
computer design. The text conveys concepts through a wealth of concrete examples highlighting 
modern CISC and RISC systems.  
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Preface  

OBJECTIVES  

This book is about the structure and function of computers. Its purpose is to present, as clearly and 
completely as possible, the nature and characteristics of modern-day computer systems.  

This task is challenging for several reasons. First, there is a tremendous variety of products that can 
rightly claim the name of "computer", from single-chip microprocessors, costing a few dollars, to 
supercomputers, costing tens of millions of dollars. Variety is exhibited not only in cost, but in size, 
performance, and application. Second, the rapid pace of change that has always characterized 
computer technology continues with no letup. These changes cover all aspects of computer 
technology, from the underlying integrated circuit technology used to construct computer components, 
to the increasing use of parallel organization concepts in combining those components.  

In spite of the variety and pace of change in the computer field, certain fundamental concepts apply 
consistently throughout. The application of these concepts depends on the current state of the 
technology and the price/performance objectives of the designer. The intent of this book is to provide a 
thorough discussion of the fundamentals of computer organization and architecture and to relate these 
to contemporary design issues.  

The subtitle suggests the theme and the approach taken in this book. It has always been important to 
design computer systems to achieve high performance, but never has this requirement been stronger 
or more difficult to satisfy than today. All of the basic performance characteristics of computer 
systems, including processor speed, memory speed, memory capacity, and interconnection data 
rates, are increasing rapidly. Moreover, they are increasing at different rates. This makes it difficult to 
design a balanced system that maximizes the performance and utilization of all elements. Thus, 
computer design increasingly becomes a game of changing the structure or function in one area to 
compensate for a performance mismatch in another area. We will see this game played out in 
numerous design decisions throughout the book.  

A computer system, like any system, consists of an interrelated set of components. The system is best 
characterized in terms of structure-the way in which components are interconnected, and function-the 
operation of the individual components. Furthermore, a computer's organization is hierarchic. Each 
major component can be further described by decomposing it into its major subcomponents and 
describing their structure and function. For clarity and ease of understanding, this hierarchical 
organization is described in this book from the top down:  

• Computer system: Major components are processor, memory, I/O.  

• Processor: Major components are control unit, registers, ALU, and instruction execution unit.  

• Control unit: Major components are control memory, microinstruction sequencing logic, and 
registers.  

The objective is to present the material in a fashion that keeps new material in a clear context. This 
should minimize the chance that the reader will get lost and should provide better motivation than a 
bottom-up approach.  

Throughout the discussion, aspects of the system are viewed from the points of view of both 
architecture (those attributes of a system visible to a machine language programmer) and organization 
(the operational units and their interconnections that realize the architecture).  

EXAMPLE SYSTEMS  

Throughout this book, examples from a number of different machines are used to clarify and reinforce 
the concepts being presented. Many, but by no means all, of the examples are drawn from two 
computer families: the Intel Pentium II, and the PowerPC. (The recently introduced Pentium III is 
essentially the same as the Pentium II, with an expanded set of multimedia instructions.) These two 
systems together encompass most of the current computer design trends. The Pentium II is essentially 
a complex instruction set computer (CISC) with a RISC core, while the PowerPC is essentially a 
reduced-instruction set computer (RISC). Both systems make use of superscalar design principles and 
both support multiple processor configurations.  
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PLAN OF THE TEXT  

The book is organized into five parts:  

Part One—  Overview: This part provides a preview and context for the remainder of the book.  

Part Two-The computer system: A computer system consists of processor, memory, and I/O 
modules, plus the interconnections among these major components. With the exception of the 
processor, which is sufficiently complex to be explored in Part Three, this part examines each of these 
aspects in turn.  

Part Three—  The central processing unit: The CPU consists of a control unit, registers, the 
arithmetic and logic unit, the instruction execution unit, and the interconnections among these 
components. Architectural issues, such as instruction set design and data types, are covered. The part 
also looks at organizational issues, such as pipelining.  

Part Four—  The control unit: The control unit is that part of the processor that activates the various 
components of the processor. This part looks at the functioning of the control unit and its 
implementation using microprogramming.  

Part Five—  Parallel organization: This final part looks at some of the issues involved in multiple 
processor and vector processing organizations.  

A more detailed, chapter-by-chapter summary appears at the end of Chapter 1. 

  

INTERNET SERVICES FOR INSTRUCTORS AND STUDENTS  

There is a Web site for this book that provides support for students and instructors. The site includes 
links to other relevant sites, transparency masters of figures in the book in PDF (Adobe Acrobat) 
format, and sign-up information for the book's Internet mailing list. The Web page is at 
http://www.shore.net/~ws/COA5e.html; see the section, "Web Site for this Book," preceding this 
Preface, for more information. An Internet mailing list has been set up so that instructors using this 
book can exchange information, suggestions, and questions with each other and with the author. As 
soon as typos or other errors are discovered, an errata list for this book will be available at 
http://www.shore.net/~ws.  

 

PROJECTS FOR TEACHING COMPUTER ORGANIZATION AND ARCHITECTURE  

For many instructors, an important component of a computer organization and architecture course is a 
project or set of projects by which the student gets hands-on experience to reinforce concepts from 
the text. This book provides an unparalleled degree of support for including a projects component in 
the course. The instructor's manual not only includes guidance on how to assign and structure the 
projects, but also includes a set of suggested projects that covers a broad range of topics from the 
text:  

• Research projects: The manual includes series of research assignments that instruct the 
student to research a particular topic on the Web or in the literature and write a report.  

• Simulation projects: The manual provides support for the use of the simulation package 
SimpleScalar, which can be used to explore computer organization and architecture design 
issues.  

• Reading/report assignments: The manual includes a list of papers in the literature, one or 
more for each chapter,  that can be assigned for the student to read and then write a short 
report.  

See Appendix B for details.  
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WHAT'S NEW IN THE FIFTH EDITION  

In the four years since the fourth edition of this book was published, the field has seen continued 
innovations and improvements. In this new edition, I try to capture these changes while maintaining a 
broad and comprehensive coverage of the entire field. To begin this process of revision, the fourth 
edition of this book was extensively reviewed by a number of professors who teach the subject. The 
result is that, in many places, the narrative has been clarified and tightened, and illustrations have 
been improved. Also, a number of new "field-tested" problems have been added.  

Beyond these refinements to improve pedagogy and user friendliness, there have been substantive 
changes throughout the book. Roughly the same chapter organization has been retained, but much of 
the material has been revised and new material has been added. Some of the most noteworthy 
changes are the following:  

• Optical memory: The material on optical memory has been expanded to include magneto 
optical memory devices.  

• Superscalar design: The chapter on superscalar design has been expanded, to include a 
more detailed discussion and two new examples, the U1traSparc II and the MIPS 810000.  

• Multimedia instruction set: the MMX instruction set, used in the Pentium II and Pentium III, 
is examined.  

• Predicated execution and speculative loading: This edition features a discussion of these 
recent concepts, which are central to the design of the new IA64 architecture from Intel and 
Hewlett-Packard.  

• SMPs, clusters, and NUMA systems: The chapter on parallel organization has been 
completely rewritten. It new includes detailed descriptions of and comparisons among 
symmetric multiprocessors (SMPs), clusters, and nonuniform memory access (NUMA) 
systems.  

• Expanded instructor support: As mentioned previously, the book now provides extensive 
support for projects. Support provided by the book Web site has also been expanded.  
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Topics from Ch. 1 to Ch. 8 and Ch.11 to Ch. 13  
Text adapted from Dr. Kammerdiener slides in 
http://www.cs.ulm.edu/~tkammerd/spring01/csci412/lectures/, with figures from the Web site’s book 
publisher and from the book author’s slides (ftp://ftp.prenhall.com/pub/esm/computer_science.s-
041/stallings/Slides/COA5e-Slides/); most chapters are based on the 4th ed. (see dates below, taken 
from Dr. Kammerdiener slides). 
 

I. OVERVIEW. (25-Jan-99) 
1. Introduction.  
2. Computer Evolution and Performance.  

 
 

Organization and Architecture (1.1) 

• Computer Architecture refers to those attributes of a system that have a direct impact on the 
logical execution of a program. Examples:  

o the instruction set  

o the number of bits used to represent various data types  

o I/O mechanisms  

o memory addressing techniques 

• Computer Organization refers to the operational units and their interconnections that realize 
the architectural specifications. Examples are things that are transparent to the programmer:  

o control signals  

o interfaces between computer and peripherals  

o the memory technology being used  

• So, for example, the fact that a multiply instruction is available is a computer architecture 
issue. How that multiply is implemented is a computer organization issue. 

 
Structure and Function (1.2) 

• Modern computers contain millions of electronic components  

• The key to describing such systems is to recognize their hierarchical nature  

o They are a set of layers or levels of interrelated subsystems  

o Each level consists of a set of components and their inter-relationships 

• The behavior of each level depends only on a simplified, abstracted characterization of the 
system at the next lower level 

• At each level, the designer is concerned with:  

o Structure: The way in which the components are interrelated  

o Function: The operation of each individual component as part of the structure.  

• We will usually describe systems from the top-down, instead of bottom-up. 

 
Function  

• A functional view of the computer 

• Basic functions that a computer can perform:  

o Data Processing - a wide variety of forms, but only a few fundamental methods or 
types  

o Data Storage - long-term or short, temporary storage 
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• Data Movement  

o Input/Output - when data are received from or delivered to a peripheral, a device 
connected directly to the computer  

o Data Communications - when data is moved over longer distances, to or from a 
remote device  

• Control - of the above functions, by instructions provided by the user of the computer (i.e. their 
programs) 

• 4 Possible types of operations with this basic structure 

Device for Processing Data in Storage 
Device for Processing Data En-route Between the Outside World and Storage 

 
 
Structure 
  

• Simplest possible view of a computer: 

o Storage  

o Processing 

o Peripherals 

o Communication Lines 

 

• Internal Structure of the Computer Itself: 

o Central Processing Unit (CPU): Controls the 
operation of the computer and performs its 
data processing functions. Often simply 
referred to as processor.  

o Main Memory: Stores data.  

o I/O: Moves data between the computer and 
its external environment.  

o System Interconnection: Some mechanism 
that provides for communication among 
CPU, main memory, and I/O. 

 

 

 

• Main Structural components of the CPU:  

o Control Unit: Controls the operation of the 
CPU and hence the computer.  

o Arithmetic and Logic Unit (ALU): Performs 
the computer's data processing functions.  

o Registers: Provides storage internal to the 
CPU.  

o CPU Interconnection: Some mechanism that 
provides for communication among the 
control unit, ALU, and registers. 
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•  (Microprogrammed) Control Unit Structure  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Brief History of Computers (2.1) 

• First Generation: Vacuum Tubes  

o 1943-1946: ENIAC  

§ first general purpose computer  
§ designed by Mauchly and Eckert  
§ designed to create ballistics tables for WWII, but too late -- helped determine 

H-bomb feasibility instead. General purpose!  
§ 30 tons + 15000 sq. ft. + 18000 vacuum tubes + 140 KW = 5000 

additions/sec 
 

• von Neumann Machine  

o 1945: stored-program concept first implement for EDVAC. Key concepts:  

§ Data and instructions 
are stored in a single 
read-write memory  

§ The contents of this 
memory are 
addressable by 
location, without 
regard to the type of 
data contained there  

§ Execution occurs in a 
sequential fashion 
(unless explicitly 
modified) from one 
instruction to the next 

• 1946: Princeton Institute for Advanced Studies (IAS) computer  

o Prototype for all subsequent general-purpose computers. With rare exceptions, all of 
today’s computers have this same general structure, and are thus referred to as von 
Neumann machines. 

 

Input 

Output  

Equipment 

Arithmetic 

and  Logic  

Unit Main 

Memory

 
Program 

Control Unit 
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• General IAS Structure Consists of:  

 

o A main memory, which stores both data and instructions  

o An ALU capable of operating on binary data  

o A control unit, which interprets the instructions in memory and causes them to be 
executed  

o I/O equipment operated by the control unit  

• First commercial computers  

o 1950: UNIVAC - commissioned by Census Bureau for 1950 calculations  

o late 1950's: UNIVAC II  
§ greater memory and higher performance  
§ same basic architecture as UNIVAC  
§ first example of upward compatibility  

o 1953: IBM 701 - primarily for science  

o 1955: IBM 702 - primarily for business 

• Second Generation: Transistors  

o 1947: Transistor developed at Bell Labs  

o Introduction of more complex ALU and control units  

o High-level programming languages  

o Provision of system software with computers  

o The data channel - an independent I/O module with its own processor and instruction 
set  

o The multiplexor - a central termination point for data channels, CPU, and memory. 
Precursor to idea of data bus. 

• Third Generation: Integrated Circuits  

o 1958: Integrated circuit developed  

o 1964: Introduction of IBM System/360  
§ First planned family of computer products. Characteristics of a family:  

§ Similar or Identical Instruction Set and Operating System 

Main 
Memory 

Arithmetic and Logic Unit 

Program Control Unit 

Input 
Output 
Equipment 

MBR 

Arithmetic & Logic Circuits 

MQ Accumulator 

MAR 
Control 
Circuits 

IBR 

IR 

PC 

Address 

Instructions 
& Data 
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§ Increasing Speed  
§ Increasing Number of I/O Ports  
§ Increasing Memory Size  
§ Increasing Cost  

§ Different models could all run the same software, but with different 
price/performance 

• 1964: First PDP-8 shipped  

o First minicomputer  

o Started OEM market  

o Introduced the bus structure  

• Fourth Generation: No clear characterization  

o Semiconductor memory  
§ Replaced bulky core memory  
§ Goes through its own generations in size, increasing by a factor of 4 each 

time: 1K, 4K, 16K, 64K, 256K, 1M, 4M, 16M on a single chip w/ declining cost 
and access time  

o Microprocessors and personal computers  

o Distributed computing  

o Larger and larger scales of integration 
 
Designing for Performance (2.2) 

• Evolution of Computer Systems  

o Price/performance  
§ price drops every year  
§ performance increases almost yearly  
§ memory size goes up a factor of 4 every 3 years or so  

o The basic building bocks for today's computers are the same as those of the IAS 
computer nearly 50 years ago 

• Microprocessor Speed  

o Density of integrated circuits increases by 4 every 3 years (e.g. memory evolution)  

o Also results in performance boosts of 4-5 times every 3 years 

  



  10 

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt 
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000 

o Requires more elaborate ways of feeding instructions quickly enough. Some 
techniques:  
§ Branch prediction  
§ Data-flow analysis  
§ Speculative Execution 

• Performance Balance  

o All components do not increase performance at same rate as processor  

o Results in a need to adjust the organization and architecture to compensate for the 
mismatch among the capabilities of the various components 

• Example: Interface between processor and main memory  

o Must carry a constant flow of program instructions and data between memory chips 
and processor  

o Processor speed and memory capacity have grown rapidly  

o Speed with which data can be transferred between processor and main memory has 
lagged badly  

o DRAM density goes up faster than amount of main memory neededd  
§ Number of DRAM's goes down  
§ With fewer DRAM's, less opportunity for parallel data transfer 

• Some solutions  

o Make DRAM's "wider" to increase number of bits retrieved at once  

o Change DRAM interface to make it more efficient  

o Reduce frequency of memory access using increasingly complex and efficient cache 
structures  

o Increase interconnect bandwidth with higher-speed buses and bus hierarchies  

• I/O devices also become increasingly demanding 

• Key is balance. Because of constant and unequal changes in:  

o processor components  

o main memory  

o I/O devices  

o interconnection structures  

designers must constantly strive to balance their throughput and processing demands. 
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II. THE COMPUTER SYSTEM.  
3. System Buses. (29-Jan-01) 
 
 
System Buses  

Interconnecting Basic Components 
 
Computer Components (3.1) 

• The von Neumann architecture is based on three key concepts:  

o Data and instructions are stored in a single read-write memory  

o The contents of this memory are addressable by location, without regard to the type of 
data contained there  

o Execution occurs in a sequential fashion (unless explicitly modified) from one 
instruction to the next 

• Two approaches to programming  

o hardwired programming - constructing a configuration of hardware logic components 
to perform a particular set of arithmetic and logic operations on a set of data  

o software - a sequence of codes or instructions, each of which supply the necessary 
control signals to a general-purpose configuration of control and logic functions (which 
may themselves be hardwired programs) 

• Other components needed  

o I/O Components - a means to:  
§ accept data and instructions in some form, and convert to an internal form of 

signals  
§ report results  

o Main memory  
§ distinguished from external storage/peripherals  
§ a place to temporarily store both:  

§ instructions - data interpreted as codes for generating control signals  
§ data - data upon which computations are performed 

 
 

• Interactions among Computer Components  

o Memory Address Register - specifies 
address for next read or write  

o Memory Buffer Register - contains 
data to be written into or receives data 
read from memory  

o I/O address register - specifies a 
particular I/O device  

o I/O buffer register - used for exchange 
of data between an I/O module and 
CPU (or memory)  

o Memory module - a set of locations  
§ with sequentially numbered 

addresses  
§ each holds a binary number that 

can be either an instruction or 
data 
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Computer Function (3.2) 

• Processing required for a single instruction is called an instruction cycle  

• Simple POV (Point-Of-View): 2 steps  

o Fetch - CPU reads an instruction from a location in memory  
§ Program counter (PC) register keeps track of which instruction executes next  
§ Normally, CPU increments PC after each fetch  
§ Fetched instruction is loaded into the instruction register (IR) 

o Execute - CPU executes the instruction  
§ May involve several operations  
§ May utilize previously changed state of CPU and (indirectly) other devices  
§ General categories:  
§ CPU-Memory: Data may be transferred from CPU to memory or vice-versa  
§ CPU-IO: Data may be transferred between CPU and an I/O module  
§ Data Processing: CPU may perform some arithmetic or logic operation on the 

data  
§ Control: An instruction may specify that the sequence of execution be altered 

• More complex instructions  

o May combine these categories  

o May perform more than one reference to memory  

o May specify I/O operation instead of memory reference  

o May specify an operation to be performed on a vector of numbers or a string of 
characters 

• Expanded execution cycle  

o Instruction Address Calculation (iac) - determine the address of the next instruction  

o Instruction Fetch (if)  

o Instruction Operation Decoding (iod) - analyze op to determine op type and operands  

o Operand Address Calculation (oac)  

o Operand Fetch (of)  

o Data Operation (do) - perform indicated op  

o Operand Store (os) - write result into memory or out to I/O 

• Interrupts  

o Mechanism by which other modules may interrupt the normal processing of the CPU  

o Classes  
§ Program - as a result of program execution  
§ Timer - generated by hardware timer  
§ I/O - to signal completion of I/O or error  
§ Hardware failure 
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• Instruction cycle with interrupts 

 

• When an interrupt signal is generated, the processor:  

o Suspends execution of the current program and saves its context (such as PC and 
other registers)  

o Sets PC to starting address of an interrupt handler routine  

• Multiple interrupts  

o Can be handled by disabling some or all interrupts. Disabled interrupts generally 
remain pending and are handled sequentially  

o Can be handled by prioritizing interrupts, allowing a higher priority interrupt to interrupt 
one of lower priority 

 

• Physical Interrupts  

o Interrupts are represented as one or more lines in the system bus  
§ One line: polling - when line goes high, CPU polls devices to determine which 

caused interrupt  
§ Multiple lines: addressable interrupts - combination of lines indicates both 

interrupt and which device caused it. Ex. 386 based architectures use 4 bit 
interrupts, allowing IRQ’s 0-15 (with an extra line to signal pending)  

 
Interconnection Structures (3.3) 

• The collection of paths connecting the various modules of a computer (CPU, memory, I/O) is 
called the interconnection structure.  
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• It must support the following types of transfers:  

o Memory to CPU  

o CPU to Memory  

o I/O to CPU  

o CPU to I/O  

o I/O to or from Memory - using Direct Memory Access (DMA) 
 
Bus Interconnection (3.4) 

• A bus is a shared transmission medium  

o Must only be used by one device at a time  

o When used to connect major computer components (CPU, memory, I/O) is called a 
system bus  

• Three functional groups of communication lines 
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o Data lines (data bus) - move data between system modules  

§ Width is a key factor in determining overall system performance 

o Address lines - designate source or destination of data on the data bus  
§ Width determines the maximum possible memory capacity of the system 

(may be a multiple of width)  
§ Also used to address I/O ports. Typically:  

§ high-order bits select a particular module  
§ lower-order bits select a memory location or I/O port within the 

module 

o Control lines - control access to and use of the data and address lines. Typical control 
lines include:  
§ Memory Read and Memory Write  
§ I/O Read and I/O Write  
§ Transfer ACK  
§ Bus Request and Bus Grant  
§ Interrupt Request and Interrupt ACK  
§ Clock  
§ Reset 

• If one module wishes to send data to another, it must:  

o Obtain use of the bus  

o Transfer data via the bus  

• If one module wishes to request data from another, it must:  

o Obtain use of the bus  

o Transfer a request to the other module over control and address lines  

o Wait for second module to send data 

• Typical physical arrangement of a system bus  

o A number of parallel electrical conductors  

o Each system component (usually on one or more boards) taps into some or all of the 
bus lines (usually with a slotted connector)  

o System can be expanded by adding more boards  

o A bad component can be replaced by replacing the board where it resides 
 
Multiple Bus Hierarchies  

• A great number of devices on a bus will cause performance to suffer  

o Propagation delay - the time it takes for devices to coordinate the use of the bus  

o The bus may become a bottleneck as the aggregate data transfer demand 
approaches the capacity of the bus (in available transfer cycles/second) 

• Traditional Hierarchical Bus Architecture  

o Use of a cache structure insulates CPU from frequent accesses to main memory  

o Main memory can be moved off local bus to a system bus  

o Expansion bus interface  
§ buffers data transfers between system bus and I/O controllers on expansion 

bus  
§ insulates memory-to-processor traffic from I/O traffic 

 



  16 

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt 
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000 

• Traditional Hierarchical Bus Architecture Example 

• High-performance Hierarchical Bus Architecture  

o Traditional hierarchical bus breaks down as higher and higher performance is seen in 
the I/O devices  

o Incorporates a high-speed bus  
§ specifically designed to support high-capacity I/O devices  
§ brings high-demand devices into closer integration with the processor and at 

the same time is independent of the processor  
§ Changes in processor architecture do not affect the high-speed bus, and vice-

versa  

o Sometimes known as a mezzanine architecture 

• High-performance Hierarchical Bus Architecture Example 
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Elements of Bus Design  

• Bus Types  

o Dedicated - a line is permanently assigned either to one function or to a physical 
subset of computer components  

o Multiplexed  
§ Time multiplexing - using the same lines for multiple purposes (different 

purposes at different times)  
§ Uses fewer lines, saving space and cost  
§ BUT more complex circuitry required in each module  
§ BUT potential reduction in performance 

• Physical dedication - the use of multiple buses, each of which connects to only a subset of 
modules, with an adapter module to connect buses and resolve contention at the higher level  

• Method of Arbitration - determining who can use the bus at a particular time  

o Centralized - a single hardware device called the bus controller or arbiter allocates 
time on the bus 

o Distributed - each module contains access control logic and the modules act together 
to share the bus  

o Both methods designate one device (either CPU or an I/O module) as master, which 
may initiate a data transfer with some other device, which acts as a slave. 

• Timing  

o Synchronous Timing  
§ Bus includes a clock line upon which a clock transmits a regular sequence of 

alternating 1’s and 0’s of equal duration  
§ A single 1-0 transmission is referred to as a clock cycle or bus cycle  
§ All other devices on the bus can read the clock line, and all events start at the 

beginning of a clock cycle 

 

o Asynchronous Timing  
§ The occurrence of one event on a bus follows and depends on the occurrence 

of a previous event  
§ Allows system to take advantage of advances in device performance by 

having a mixture of slow and fast devices, using older and newer technology, 
sharing the same bus  
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§ BUT harder to implement and test than synchronous timing 

• Bus Width  

o Data bus: wider = better performance  

o Address bus: wider = more locations can be referenced 

• Data Transfer Type  

o All buses must support write (master to slave) and read (slave to master) transfers 

• Combination operations  

o Read-modify-write  
§ a read followed immediately by a write to the same address.  
§ Address is only broadcast once, at the beginning of the operation  
§ Indivisible, to prevent access to the data element by other potential bus 

masters  
§ Principle purpose is to protect shared memory in a multiprogramming system  

o Read-after-write - indivisible operation consisting of a write followed immediately by a 
read from the same address (for error checking purposes) 

• Block data transfer  

o one address cycle followed by n data cycles  

o first data item to or from specified address  

o remaining data items to or from subsequent addresses 
 
 
PCI (3.5) 

• PCI = Peripheral Component Interconnect  

o High-bandwidth  

o Processor independent  

o Can function as a mezzanine or peripheral bus  

• Current Standard  

o up to 64 data lines at 33Mhz  

o requires few chips to implement  

o supports other buses attached to PCI bus  

o public domain, initially developed by Intel to support Pentium-based systems  

o supports a variety of microprocessor-based configurations, including multiple-
processors  

o uses synchronous timing and centralized arbitration 
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• Typical Desktop System  

Note: Bridge acts as a data buffer so that the speed of the PCI bus may differ from that of the 
processor’s I/O capability. 

 

• Typical Server System  

Note: In a multiprocessor system, one or more PCI configurations may be connected by bridges to 
the processor’s system bus. 

• Bus Structure  

o 50 mandatory signal lines, divided into the following groups:  
§ System Pins - includes clock and reset  
§ Address and Data Pins - 32 time-multiplexed lines for addresses and data, 

plus lines to interpret and validate these  
§ Interface Control Pins - control timing of transactions and provide coordination 

among initiators and targets  
§ Arbitration Pins - not shared, each PCI master has its own pair to connect to 

PCI bus arbiter  
§ Error Reporting Pins - for parity and other errors 
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o 50 optional signal lines, divided into the following groups:  
§ Interrupt Pins - not shared, each PCI device has its own interrupt line or lines 

to an interrupt controller  
§ Cache Support Pins  
§ 64-bit Bus Extension Pins - 32 additional time-multiplexed lines for addresses 

and data, plus lines to interpret and validate these, and to provide agreement 
between two PCI devices on use of these  

§ ITAG/Boundary Scan Pins - support testing procedures from IEEE Standard 
149.1 

• PCI Commands  

o issued by the initiator (the master) to the target (the slave)  

o Use the C/BE lines  

o Types  

- Interrupt Ack - Memory Read Multiple  
- Special Cycle - Memory Write  
- I/O Read - Memory Write & Invalidate  
- I/O Write - Configuration Read  
- Memory Read - Configuration Write  
- Memory Read Line - Dual Address Cycle 

• Data Transfer Example  

a. Once a bus master has gained control of the bus, it may begin the transaction by 
asserting FRAME. This line remains asserted until the initiator is ready to complete 
the last data phase. The initiator also puts the start address on the address bus, and 
the read command on the C/BE lines. 

b. At the start of clock 2, the target device will recognize its address on the AD lines.  

c. The initiator ceases driving the AD bus. A turnaround cycle (indicated by the two 
circular arrows) is required on all signal lines that may be driven by more than one 
device, so that the dropping of the address signal will prepare the bus for use by the 
target device. The initiator changes the information on the C/BE lines to designate 
which AD lines are to be used for transfer for the currently addressed data (from 1 to 4 
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bytes). The initiator also asserts IRDY to indicated that it is ready for the first data 
item. 

d. The selected target asserts DEVSEL to indicate that it has recognized its address and 
will respond. It places the requested data on the AD lines and asserts TRDY to 
indicate that valid data is present on the bus.  

e. The initiator reads the data at the beginning of clock 4 and changes the byte enable 
lines as needed in preparation for the next read.  

f. In this example, the target needs some time to prepare the second block of data for 
transmission. Therefore, it deasserts TRDY to signal the initiator that there will not be 
new data during the coming cycle. Accordingly, the initiator does not read the data 
lines at the beginning of the 5th clock cycle and does not change byte enable during 
that cycle. The block of data is read at beginning of clock 6.  

g. During clock 6, the target places the 3rd data item on the bus. However, in this 
example, the initiator is not yet ready to read the data item (e.g., it has a temporary 
buffer full condition). It therefore deasserts IRDY. This will cause the target to maintain 
the third data item on the bus for an extra clock cycle. 

h. The initiator knows that the 3rd data transfer is the last, and so it deasserts FRAME to 
signal the target that this is the last data transfer. It also asserts IRDY to signal that it 
is ready to complete that transfer.  

i. The initiator deasserts IRDY, returning the bus to the idle state, and the target 
deasserts TRDY and DEVSEL. 

• Arbitration  

o Centralized  

o Synchronous  

o Each master has a unique request (REQ) and grant (GNT) signal  

o Each master’s REQ and GNT is attached to a central arbiter  

o Arbitration algorithm can be any desired, programmed into the arbiter  

o Uses hidden arbitration, meaning that arbitration can take place while other bus 
transactions are occurring on other bus lines 

 
PCI Enhancements: AGP  

• AGP – Advanced Graphics Port  

o Called a port, not a bus because it only connects 2 devices 



  22 

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt 
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000 

II. THE COMPUTER SYSTEM.  
3. ... 
4. Internal Memory. (29-Feb-00) 
 
 
Characteristics of Computer Memory Systems (4.1) 

• Location  

o CPU (registers and L1 cache)  

o Internal Memory (main)  

o External (secondary)  

• Capacity  

o Word Size - typically equal to the number of bits used to represent a number and to 
the instruction length.  

o Number of Words - has to do with the number of addressable units (which are 
typically words, but are sometimes bytes, regardless of word size). For addresses of 
length A (in bits), the number of addressable units is 2A.  

• Unit of Transfer  

o Word  

o Block  

• Access Method  

o Sequential Access  
§ information used to separate or identify records is stored with the records  
§ access must be made in a specific linear sequence  
§ the time to access an arbitrary record is highly variable  

o Direct Access  
§ individual blocks or records have an address based on physical location  
§ access is by direct access to general vicinity of desired information, then 

some search  
§ access time is still variable, but not as much as sequential access  

o Random Access  
§ each addressable location has a unique, physical location  
§ access is by direct access to desired location  
§ access time is constant and independent of prior accesses  

o Associative  
§ desired units of information are retrieved by comparing a sub-part of the unit 

with a desired mask -- location is not needed  
§ all matches to the mask are retrieved simultaneously  
§ access time is constant and independent of prior accesses  
§ most useful for searching - a search through N possible locations would take 

O(N)  with Random Access Memory, but O(1) with Associative Memory 

• Performance  

o Access Time  

o Memory Cycle Time - primarily for random-access memory = access time + additional 
time required before a second access can begin (refresh time, for example)  

o Transfer Rate  
§ Generally measured in bits/second  
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§ Inversely proportional to memory cycle time for random access memory  

• Physical Type  

o Most common - semiconductor and magnetic surface memories  

o Others - optical, bubble, mechanical (e.g. paper tape), core, esoteric/theoretical (e.g. 
biological) 

• Physical Characteristics  

o volatile - information decays or is lost when power is lost  

o non-volatile - information remains without deterioration until changed -- no electrical 
power needed  

o non-erasable  
§ information cannot be altered with a normal memory access cycle  
§ As a practical matter, must be non-volatile  

• Organization - the physical arrangement of bits to form words.  

o Obvious arrangement not always used  

o Ex. Characters vs. Integers vs. Floating Point Numbers 
 
The Memory Hierarchy  

• Design Constraints  

o How much? “If you build it, they will come.” Applications tend to be built to use any 
commonly available amount, so question is open-ended.  

o How fast? Must be able to keep up with the CPU -- don’t want to waste cycles waiting 
for instructions or operands.  

o How expensive? Cost of memory (also associated with “How much?”) must be 
reasonable vs. other component costs.  

• There are trade-offs between the 3 key characteristics of memory (cost, capacity, and access 
time) which yield the following relationships:  

o Smaller access time -> greater cost per bit  
o Greater capacity -> smaller cost per bit  
o Greater capacity -> greater access time 

• The designer’s dilemma  

o Would like to use cheaper, large capacity memory technologies  
o Good performance requires expensive, lower-capacity, quick-access memories  

• Solution: Don’t rely on a single memory component or technology -- use a memory hierarchy  

o Organizes memories such that:  
§ Cost/bit decreases  
§ Capacity increases  
§ Access time increases  

o Data and instructions are distributed across this memory according to:  
§ Frequency of access of the memory by the CPU decreases (key to success)  

o This scheme will reduced overall costs while maintaining a given level of performance. 

• Contemporary Memory Hierarchy 

Magnetic Tape 
Optical/Magnetic Disk 
Disk Cache 
Main Memory 
Cache 
Registers 



  24 

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt 
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000 

• Success depends upon the locality of reference principle  

o memory references tend to cluster  
§ temporal locality - if a location is referenced, it is likely to be referenced again 

in the near future  
§ positional locality - when a location is referenced, it is probably close to the 

last location referenced  

o so a single (slower) transfer of memory from a lower level of the hierarchy to a higher 
level of the hierarchy will tend to service a disproportionate number of future requests, 
which can be satisfied by the higher (faster) level  

o This is the technique which is the basis for caching and virtual memory  

o Although we don’t always refer to it as caching, this technique is used at all levels of 
the memory hierarchy, often supported at the operating system level 

 
Semiconductor Main Memory (4.2) 

• Types of Random-Access Semiconductor Memory  

o RAM - Random Access Memory  
§ misused term (all these are random access)  
§ possible both to read data from the memory and to easily and rapidly write 

new data into the memory  
§ volatile - can only be used for temporary storage (all the other types of 

random-access memory are non-volatile)  
§ types:  

§ dynamic - stores data as charge on capacitors  
§ tend to discharge over time  
§ require periodic charge (like a memory reference) to refresh  
§ more dense and less expensive than comparable static 

RAMs  
§ static - stores data in traditional flip-flop logic gates  

§ no refresh needed  
§ generally faster than dynamic RAMs 

o ROM - Read Only Memory  
§ contains a permanent pattern of data which cannot be changed  
§ data is actually wired-in to the chip as part of the fabrication process  

§ data insertion step has a large fixed cost  
§ no room for error  

§ cheaper for high-volume production  

o PROM - Programmable Read Only Memory  
§ writing process is performed electrically  
§ may be written after chip fabrication  

§ writing uses different electronics than normal memory writes  
§ no room for error  

§ attractive for smaller production runs  

o EPROM - Erasable Programmable Read Only Memory  
§ read and written electrically, as with PROM  
§ before a write, all cells must be erased by exposure to UV radiation (erasure 

takes about 20 minutes)  
§ writing uses different electronics than normal memory writes  
§ errors can be corrected by erasing and starting over  

§ more expensive than PROM 

o EEPROM - Electrically Erasable Programmable Read Only Memory  
§ byte-level writing - any part(s) of the memory can be written at any time  
§ updateable in place - writing uses ordinary bus control, address, and data 

lines  
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§ writing takes much longer than reading  
§ more expensive (per bit) and less dense than EPROM  

o Flash Memory  
§ uses electrical erasing technology  
§ allows individual blocks to be erased, but not byte-level erasure, and modern 

flash memory is updateable in place (some may function more like I/O 
modules)  

§ much faster erasure than EPROM  
§ same density as EPROM  
§ sometimes refers to other devices, such as battery-backed RAM and tiny 

hard-disk drives which behave like flash memory for all intents and purposes 

• Organization  

o All semiconductor memory cells:  
§ exhibit 2 stable (or semi-stable states) which can represent binary 1 or 0  
§ are capable of being written into (at least once), to set the state  
§ are capable of being read to sense the state  

o Commonly, a cell has 3 functional terminals capable of carrying an electrical signal 

• Chip Logic  

o Number of bits that can be read/written at a time  
§ Physical organization is same as logical organization is one extreme (W 

words of B bits each)  
§ Other extreme is 1-bit-per-chip -- data is read/written one bit at a time  

o Typical organization  
§ 4 bits read/written at a time  
§ Logically 4 square arrays of 2048x2048 cells  
§ Horizontal lines connect to Select terminals  
§ Vertical lines connect to Data-In/Sense terminals  
§ Multiple DRAMs must connect to memory controller to read/write an 8 bit 

word  
§ Illustrates why successive generations grow by a factor of 4 -- each extra pin 

devoted to addressing doubles the number of rows and columns 
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• Chip Packaging  

o Typical Pin outs  
§ A0-An: Address of word being accessed (may be multiplexed row/column) for 

an n bit (n*2 bit) address  
§ D0-Dn: Data in/out for n bits  
§ Vcc: Power supply  
§ Vss: Ground  
§ CE: Chip enable - allows several chips to use same circuits for everything 

else, but only have one chip use them  
§ Vpp: Program Voltage - used for writes to (programming) an EPROM  
§ RAS: Row Address Select  
§ CAS: Column Address Select  
§ W or WE: Write enable  
§ OE: Output enable 

• Error Correction Principles  

o Hard Failure  
§ a permanent defect  
§ causes same result all the time, or randomly fluctuating results  

o Soft Error - a random, nondestructive event that alters the contents of one or more 
memory cells, without damaging the memory. Caused by:  
§ power supply problems  
§ alpha particles  

o Detection and Correction 

• Hamming codes  

o An error-correcting code are characterized by the number of bit errors in a word that it 
can correct and detect  

o The Hamming Code is the simplest error-correcting code. For example, a hamming 
code for 4 data bits (1110) requires 3 parity bits (100), as shown (to make number of 
1’s in a circle even): Note that the parity bits (10) are now incorrect, and their 
intersection identifies the data bit in error, which can be corrected back to (1) by 
negation. 

• SEC-DED (single-error-correcting, double-error-detecting) codes  

o Note that an error of more than a single bit cannot be corrected with the previous 
method (called a single-error-correcting code).  

o Instead, we can add an additional bit to make the total number of 1’s (in both data and 
parity bits) even. If this bit compares differently, we know that a double error has been 
detected (although we cannot correct it) 

 
Cache Memory (4.3) 

• Principles  

o Intended to give memory speed approaching that of fastest memories available but 
with large size, at close to price of slower memories  

o Cache is checked first for all memory references.  

o If not found, the entire block in which that reference resides in main memory is stored 
in a cache slot, called a line  

o Each line includes a tag (usually a portion of the main memory address) which 
identifies which particular block is being stored  

o Locality of reference implies that future references will likely come from this block of 
memory, so that cache line will probably be utilized repeatedly.  
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o The proportion of memory references, which are found already stored in cache, is 
called the hit ratio. 

 

• Elements of Cache Design  

o Cache Size  
§ small enough that overall average cost/bit is close to that of main memory 

alone  
§ large enough so that overall average access time is close to that of cache 

alone  
§ large caches tend to be slightly slower than small ones  
§ available chip and board area is a limitation  
§ studies indicate that 1K-512K words is optimum cache size 

• Mapping Function - determining which cache line to use for a particular block of main memory 
(since number_of_cache_lines << number_of_blocks)  

o Direct mapping: line# = block# modulo number_of_cache_lines  
§ each block of main memory gets a unique mapping  
§ if a program happens to repeatedly reference words from two different blocks 

that map into the same cache line, then the blocks will be continually swapped 
in the cache and the hit ratio will be low. 
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Note that  
§ all locations in a single block of memory have the same higher order bits (call 

them the block number), so the lower order bits can be used to find a 
particular word in the block.  

§ within those higher-order bits, their lower-order bits obey the modulo mapping 
given above (assuming that the number of cache lines is a power of 2), so 
they can be used to get the cache line for that block  

§ the remaining bits of the block number become a tag, stored with each cache 
line, and used to distinguish one block from another that could fit into that 
same cache line.  

o Associative Mapping  
§ Allows each memory block to be loaded into any line of the cache  
§ Tag uniquely identifies a block of main memory  
§ Cache control logic must simultaneously examine every line’s tag for a match  
§ Requires fully associative memory  

§ very complex circuitry  
§ complexity increases exponentially with size  
§ very expensive 

 

o Set Associative Mapping  
§ Compromise between direct and associative mappings  
§ Cache is divided into v sets, each of which has k lines  

§ number_of_cache_lines = vk  
§ set# = block# modulo v  
§ so a given block will map directly to a particular set, but can occupy 

any line in that set (associative mapping is used within the set)  
§ the most common set associative mapping is 2 lines per set, and is 

called two-way set associative. It significantly improves hit ratio over 
direct mapping, and the associative hardware is not too expensive. 
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• Replacement Algorithms  

o When all lines are occupied, bringing in a new block requires that an existing line be 
overwritten  
§ No choice possible with direct mapping  
§ Algorithms must be implemented in hardware for speed  

o Least-recently-used (LRU)  
§ Idea: replace that block in the set which has been in cache longest with no 

reference to it  
§ Implementation: with 2-way set associative, have a USE bit for each line in a 

set. When a block is read into cache, use the line whose USE bit is set to 0, 
then set its USE bit to one and the other line’s USE bit to 0.  

§ Probably the most effective method  

o First-in-first-out (FIFO)  
§ Idea: replace that block in the set which has been in the cache longest  
§ Implementation: use a round-robin or circular buffer technique (keep up with 

which slot’s “turn” is next) 

o Least-frequently-used (LFU)  
§ Idea: replace that block in the set which has experienced the fewest 

references  
§ Implementation: associate a counter with each slot and increment when used  

o Random  
§ Idea: replace a random block in the set  
§ Interesting because it is only slightly inferior to algorithms based on usage.  
 

• Write Policy  

o If a block has been altered in cache, it is necessary to write it back out to main 
memory before replacing it with another block (writes are about 15% of memory 
references)  
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o Problems  
§ I/O modules may be able to read/write directly to memory  
§ Multiple CPU’s may be attached to the same bus, each with their own cache 

o write through  
§ all write operations are made to main memory as well as to cache, so main 

memory is always valid  
§ other CPU’s monitor traffic to main memory to update their caches when 

needed  
§ this generates substantial memory traffic and may create a bottleneck  

o write back  
§ when an update occurs, an UPDATE bit associated with that slot is set, so 

when the block is replaced it is written back first  
§ accesses by I/O modules must occur through the cache  
§ multiple caches still can become invalidated, unless some cache coherency 

system is used. Such systems include:  
§ Bus Watching with Write Through - other caches monitor memory 

writes by other caches (using write through) and invalidates their own 
cache line if a match  

§ Hardware Transparency - additional hardware links multiple caches 
so that writes to one cache are made to the others  

§ Non-cacheable Memory - only a portion of main memory is shared by 
more than one processor, and it is non-cacheable 

• Block Size  

o As the block size increases, more useful data is brought into the cache, increasing hit 
ratio, BUT  

o Larger blocks reduce the number of blocks that fit into a cache, and a small number of 
blocks results in data being overwritten shortly after it is fetched  

o As a block becomes larger, each additional word is farther from the requested word, 
therefore less likely to be needed in the near future  

o A size from 4 to 8 addressable units seems close to optimum  

• Number of Caches  

o On-chip cache (L1 cache)  
§ on same chip as CPU  
§ requires no bus operation for cache hits  
§ short data paths and same speed as other CPU transactions  
§ reduces overall bus activity and increases not only CPU operations but overall 

system performance  

o Off-chip cache (L2 cache) may still be desirable  
§ It can be much larger  
§ It can be used with a local bus to buffer the CPU cache-misses from the 

system bus 

• Unified vs. Split Cache  

o Unified cache  
§ a single cache stores both data and instructions  
§ has a higher hit rate that split cache, because it automatically balances load 

between data and instructions (if an execution pattern involves more 
instruction fetches than data fetches, the cache will fill up with more 
instructions than data)  

§ only one cache need be designed and implemented  
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o In a split cache, one cache is dedicated to instructions, and one cache is dedicated to 
data  
§ trend is toward split cache because of superscalar CPU’s  
§ better for pipelining, prefetching, and other parallel instruction execution 

designs  
§ eliminates cache contention between instruction processor and the execution 

unit (which uses data) 
 
Pentium Cache Organization (4.4 + … ) 

• Evolution  

o 80386 - No on-chip cache  

o 80486 - unified 8Kbyte on-chip cache (16 byte line, 4-way set associative)  

o Pentium - two 8Kbyte on-chip caches split between data and instructions (32 byte line, 
two-way set associative)  

o Pentium Pro/II – 8K, 32 byte line, 4-way set associative instruction cache and 8K, 32 
byte line, 2-way set associative data cache, plus a L2 cache on a dedicated local bus 
feeding both. 
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• Data Cache Internal Organization  

o Basics  
§ Ways  

§ 128 sets of two lines each  
§ Logically organized as two 4Kbyte “ways” (each way contains one 

line from each set, for 128 lines per way)  
§ Directories  

§ Each line has a tag taken from the 20 most significant bits of the 
memory address of the data stored in the corresponding line  

§ Each line has two state bits, one of which is used to support a write-
back policy (write-through can be dynamically configured)  

§ Logically organized as 2 directories, corresponding to the ways (one 
directory entry for each line)  

§ LRU support  
§ Cache controller uses a least-recently-used replacement policy  
§ A single array of 128 LRU bits supports both ways (one bit for each 

set of two lines)  
§ Level-2 cache is supported  

§ May be 256 or 512 Kbytes  
§ May use a 32-, 64-, or 128-byte line  
§ Two-way set associative 

• Data Cache Consistency  

o Supports MESI protocol  
§ Supported by the two state bits mentioned earlier  
§ Each line can be in one of 4 states:  

§ Modified - The line in the cache has been modified and is available 
only in this cache  

§ Exclusive - The line in the cache is the same as that in main memory 
and is not present in any other cache  

§ Shared - The line in the cache is the same as that in main memory 
and may be present in another cache  

§ Invalid - The line in the cache dopes not contain valid data  
§ Designed to support multiprocessor organizations, but also useful for 

managing consistency between L1 and L2 caches in a single processor 
organization.  
§ In such an organization, the L2 cache acts as the “memory” that is 

cached by the L1 cache.  
§ So when MESI refers to a line being “the same as memory” (or not), it 

may be referring to the contents of another cache. 
 
PowerPC Cache Organization (…  4.4) 

• Evolution  

o PowerPC 601 - Unified 32Kbyte on-chip cache (32 byte line, 8-way set associative)  

o PowerPC 603 - two 8Kbyte on-chip caches split between data and instructions (32 
byte line, two-way set associative)  

o PowerPC 604 - two 16Kbyte on-chip caches split between data and instructions (32 
byte line, 4-way set associative)  

o PowerPC 620 - two 32Kbyte on-chip caches split between data and instructions (64 
byte line, 8-way set associative)  
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• External Organizational Features  

 

o Code cache  
§ Mostly ignored here -- see chap. 12 for detail  
§ Read-only  

o Data cache  
§ uses a load/store unit to feed both floating point unit and any of the 3 parallel 

integer ALU’s  
§ Uses MESI, but adds Allocated (A) state - used when a block of data in a line 

is swapped out and replaced. 
 
Advanced DRAM Organization (4.5) 

• Fast Page Mode (FPM DRAM)  

o A row of memory cells (all selected by the same row address) is called a page  

o Only the first access in a page needs to have the row address lines precharged  

o Successive accesses in the same page require only precharging the column address 
lines  

o Supports bus speeds up to about 28.5Mhz (w/ 60ns DRAM’s)  

• Extended Data Out (EDO RAM)  

o Just like FPM DRAM, except that the output is latched into D flip-flops (instead of just 
being line transitions)  

o This allows row and/or column addresses for the next memory operation to be loaded 
in parallel with reading the output (because the flip-flops will not change until they 
receive a change signal)  

o Supports bus speeds up to about 40Mhz (w/ 60ns DRAM’s) 

• Burst EDO (BEDO RAM)  

o Allows bursting of sequential data, and independent generation of next addresses, so 
that only the first access needs row/column addresses from bus  
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o Supports bus speeds up to 66Mhz  

• Enhanced DRAM  

o Developed by Ramtron  

o Integrates a small SRAM cache which stores contents of last 512-nibble row read  

o Refresh is in parallel to cache reads  

o dual ported - reads can be done in parallel with writes  

• Cache DRAM  

o Developed by Mitsubishi  

o Similar to EDRAM, but:  
§ uses a larger cache - 16K vs. 2K  
§ uses a true cache, consisting of 64-bit lines  
§ cache can also be used as a buffer to support the serial access of a block of 

data 

• Synchronous DRAM  

o Developed jointly by several manufacturers  

o Standard DRAM is asynchronous  
§ Memory controller watches for read request and address lines  
§ After request is made, bus master must wait while DRAM responds  
§ Bus master watches acknowledgment lines for operation to complete (and 

must wait in the meantime)  

o Synchronous DRAM moves data in an out in a set number of clock cycles, 
synchronized with the system clock, just like the processor  

o Other speedups  
§ burst mode - after first access, no address setup or row/column line 

precharge time is needed  
§ dual-bank internal architecture improves opportunities for on-chip parallelism  
§ mode register allows burst length, burst type, and latency (between receipt of 

a read request and beginning of data transfer) to be customized to suit 
specific system needs  

o Current standard works with bus speeds up to 100Mhz (while bursting), or 75Mhz for 
so-called SDRAM Lite. 

• Rambus DRAM  

o Developed by Rambus  

o Vertical package, all pins on one side, designed to plug into the RDRAM bus (a 
special high speed bus just for memory)  

o After initial 480 ns access time, provides burst speeds of 500 Mbps (compared w/ 
about 33 Mbps for asynchronous DRAM’s)  

• RamLink  

o Developed as part of the IEEE working group effort called Scalable Coherent Interface 
(SCI)  

o DRAM chips act as nodes in a ring network  

o Data is exchanged in packets  
§ Controller sends a request packet to initiate mem transaction, containing cmd 

header, address, checksum, and data to be written (if a write). Extra data in 
cmd header allows more efficient access.  

o Supports a small or large number of DRAM’s  

o Does not dictate internal DRAM structure 
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II. THE COMPUTER SYSTEM.  
3. ...  
4. ...  
5. External Memory. (28-Mar-00) 
 
 
RAID (5.2) 

Redundant Arrays of Independent Disks 
 
Three Common (mostly) Characteristics  

• RAID is a set of physical disk drives viewed by the operating system as a single logical drive.  

• Data are distributed across the physical drives of an array.  

• Redundant disk capacity is used to store parity information, which guarantees data 
recoverability in case of a disk failure.* * Except for RAID level 0. 

 
 
Level 0 (Non-redundant)  

 
• Not a true member of RAID – no redundancy!  

• Data is striped across all the disks in the array  

o Each disk is divided into strips which may be blocks, sectors, or some other 
convenient unit.  

o Strips from a file are mapped round-robin to each array member  

o A set of logically consecutive strips that maps exactly one strip to each array member 
is a stripe  

• If a single I/O request consists of multiple contiguous strips, up to n strips can be handled in 
parallel, greatly reducing I/O transfer time.  

 
 
Level 1 (Mirrored)  

 
• Only level where redundancy is achieved by simply duplicating all the data  

• Data striping is used as in RAID 0, but each logical strip is mapped to two separate physical 
disks  

• A read request can be serviced by disk with minimal seek and latency time  
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• Write requests require updating 2 disks, but both can be updated in parallel, so no penalty 

• When a drive fails, data may be accessed from other drive  

• High cost for high performance  

o Usually used only for highly critical data.  

o Best performance when requests are mostly reads 
 
 
Level 2 (Redundancy through Hamming Code)  

 
• Uses parallel access – all member disks participate in every I/O request  

• Uses small strips, often as small as a single byte or word  

• An error-correcting code (usually Hamming) is calculated across corresponding bits on each 
data disk, and the bits of the code are stored in the corresponding bit positions on multiple 
parity disks.  

• Useful in an environment where a lot of disk errors are expected  

o Usually expensive overkill.  

o Disks are so reliable that this is never implemented 
 
 
Level 3 (Bit-Interleaved Parity)  

 
• Uses parallel access – all member disks participate in every I/O request  

• Uses small strips, often as small as a single byte or word  

• Uses only a single parity disk, no matter how large the disk array  

o A simple parity bit is calculated and stored  

o In the event of a failure in one disk, the data on that disk can be reconstructed from 
the data on the others  

o Until the bad disk is replaced, data can still be accessed (at a performance penalty) in 
reduced mode 
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Level 4 (Block-Level Parity)  

 
• Uses an independent access technique  

o each member disk operates independently, so separate I/O requests can be satisfied 
in parallel.  

o More suitable for apps that require high I/O request rates rather than high data 
transfer rates.  

• Relatively large strips  

• Has a write penalty for small writes, but not for larger ones (because parity can be calculated 
from values on other strips)  

• In any case, every write involves the parity disk 

 
Level 5 (Block-Level Distributed Parity) 

  
• Like Level 4, but distributes parity strips across all disks, removing the parity bottleneck 

 
 
Level 6 (Dual Redundancy)  

 

• Like Level 6, but provides 2 parity strips for each stripe, allowing recovery from 2 
simultaneous disk failures. 
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II. THE COMPUTER SYSTEM.  
3. ...  
4. ...  
5. ...  
6. Input/Output. (23-Mar-98) 
 
 
Introduction  

• Why not connect peripherals directly to system bus?  

o Wide variety w/ various operating methods  

o Data transfer rate of peripherals is often much slower than memory or CPU  

o Different data formats and word lengths than used by computer  

• Major functions of an I/O module  

o Interface to CPU and memory via system bus or central switch  

o Interface to one or more peripheral devices by tailored data links 
 

 
External Devices (6.1) 

• External devices, often called peripheral devices or just peripherals, make computer systems 
useful.  

• Three broad categories of external devices:  

o Human-Readable (ex. terminals, printers)  
o Machine-Readable (ex. disks, sensors)  
o Communication (ex. modems, NIC’s) 

• Basic structure of an external device:  

o Data - bits sent to or received from the I/O module 
o Control signals - determine the function that the device will perform  
o Status signals - indicate the state of the device (esp. READY/NOT-READY)  
o Control logic - interprets commands from the I/O module to operate the device  
o Transducer - converts data from computer-suitable electrical signals to the form of 

energy used by the external device  
o Buffer - temporarily holds data being transferred between I/O module and the external 

device 
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I/O Modules (6.2) 

• An I/O Module is the entity within a computer responsible for:  

o control of one or more external devices  
o exchange of data between those devices and main memory and/or CPU registers  

• It must have two interfaces:  

o internal, to CPU and main memory  

o external, to the device(s) 

• Major function/requirement categories  

o Control and Timing  
§ Coordinates the flow of traffic between internal resources and external 

devices  
§ Cooperation with bus arbitration 

o CPU Communication  
§ Command Decoding  
§ Data  
§ Status Reporting  
§ Address Recognition. 

o Device Communication (see diagram under External Devices)  
§ Commands  
§ Status Information  
§ Data 

o Data Buffering  
§ Rate of data transfer to/from CPU is orders of magnitude faster than to/from 

external devices  
§ I/O module buffers data so that peripheral can send/receive at its rate, and 

CPU can send/receive at its rate 

o Error Detection  
§ Must detect and correct or report errors that occur  
§ Types of errors  

§ Mechanical/electrical malfunctions  
§ Data errors during transmission 

 

• I/O Module Structure  

o Basic Structure 
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o An I/O module functions to allow the CPU to view a wide range of devices in a simple-
minded way.  

o A spectrum of capabilities may be provided  
§ I/O channel or I/O processor - takes on most of the detailed processing 

burden, presenting a high-level interface to CPU  
§ I/O controller or device controller - quite primitive and requires detailed control  
§ I/O module - generic, used when no confusion results 

 
Programmed I/O (6.3) 

• With programmed I/O, data is exchanged under complete control of the CPU  

o CPU encounters an I/O instruction  

o CPU issues a command to appropriate I/O module  

o I/O module performs requested action and sets I/O status register bits  

o CPU must wait, and periodically check I/O module status until it finds that the 
operation is complete 

• To execute an I/O instruction, the CPU issues:  

o an address, specifying I/O module and external device  

o a command, 4 types:  
§ control - activate a peripheral and tell it what to do 
§ test - querying the state of the module or one of its external devices  
§ read - obtain an item of data from the peripheral and place it in an internal 

buffer (data register from preceding illustration)  
§ write - take an item of data from the data bus and transmit it to the peripheral 

• With programmed I/O, there is a close correspondence between the I/O instructions used by 
the CPU and the I/O commands issued to an I/O module  

• Each I/O module must interpret the address lines to determine if a command is for itself.  

• Two modes of addressing are possible:  

o Memory-mapped I/O  
§ there is a single address space for memory locations and I/O devices.  
§ allows the same read/write lines to be used for both memory and I/O 

transactions 

o Isolated I/O  
§ full address space may be used for either memory locations or I/O devices.  
§ requires an additional control line to distinguish memory transactions from I/O 

transactions  
§ programmer loses repertoire of memory access commands, but gains 

memory address space 
 
 
Interrupt-Driven I/O (6.4) 

• Problem with programmed I/O is CPU has to wait for I/O module to be ready for either 
reception or transmission of data, taking time to query status at regular intervals.  

• Interrupt-driven I/O is an alternative  

o It allows the CPU to go back to doing useful work after issuing an I/O command.  

o When the command is completed, the I/O module will signal the CPU that it is ready 
with an interrupt. 

• Simple Interrupt Processing Diagram 
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• Design issues  

o How does the CPU determine which device issued the interrupt?  
§ Multiple Interrupt Lines  

§ most straightforward solution  
§ impractical to dedicate many lines  

§ multiple I/O modules are likely attached to each line  
§ one of other 3 techniques must be used on each line 

§ Software Poll  
§ interrupt service routine polls each device to see which caused the 

interrupt  
§ using a separate command line on the system bus (TESTI/O) 

? raise TESTI/O ? place I/O module address on address lines 
? check for affirmative response  

§ each I/O module contains an addressable status register, 
which CPU reads  

§ time consuming 
§ Daisy Chain (hardware poll, vectored)  

§ interrupt occurs on interrupt request line which is shared by all I/O 
modules  

§ CPU senses interrupt  
§ CPU sends interrupt acknowledge, which is daisy-chained through all 

I/O modules  
§ When it gets to requesting module, it places its vector (either an I/O 

address, or an ID which the CPU uses as a pointer to the appropriate 
device-service routine) on the data lines  

§ No general interrupt-service routine needed (still need specific ones)  
§ Bus Arbitration (vectored)  
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§ requires an I/O module to first gain control of the bus before it can 
interrupt  

§ thus only one module can interrupt at a time  
§ when CPU detects the interrupt, it ACK’s  
§ requesting module then places its vector on the data lines  
§ another type of vectored interrupt 

• If multiple interrupts have occurred, how does the CPU decide which one to process?  

o Multiple lines - assign priorities to lines, and pick the one with highest priority  

o Software polling - order in which modules are polled determines priority  

o Daisy chain - order of modules on chain determines priority  

o Bus arbitration can employ a priority scheme through the arbiter or arbitration 
algorithm 

 
Direct Memory Access (6.5) 

• Drawbacks of Programmed and Interrupt-Driven I/O  

o The I/O transfer rate is limited by the speed with which the CPU can test and service a 
device  

o The CPU is tied up in managing an I/O transfer; a number of instructions must be 
executed for each I/O transfer 

• DMA Function  

 

o Involves adding a DMA module to the system bus  
§ can take over system from CPU  
§ can mimic certain CPU operations  

o When CPU wishes to read or write a block of data it issues a command to the DMA 
module containing:  
§ Whether a read or write is requested  
§ The address of the I/O device involved  
§ The starting location in memory to read from or write to  
§ The number of words to be read or written 

o CPU continues with other work  
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o DMA module handles entire operation. When memory has been modified as ordered, 
it interrupts the CPU  

o CPU is only involved at beginning and end of the transfer  

o DMA module can force CPU to suspend operation while it transfers a word  
§ called cycle stealing  
§ not an interrupt, just a wait state  
§ slows operation of CPU, but not as badly as non-DMA 

• Possible DMA Configurations  

o Single Bus, Detached DMA  

§ DMA module uses programmed I/O as a surrogate CPU  
§ Each transfer of a word consumes 2 bus cycles  

o Single-Bus, Integrated DMA-I/O  

§ DMA module is attached to one or more I/O modules 
§ Data and control instructions can move between I/O module and DMA module 

without involving system bus  
§ DMA module must still steal cycles for transfer to memory  

o I/O Bus  

 

§ Reduces number of I/O interfaces in the DMA module to one  
§ Easily expanded  
§ DMA module must still steal cycles for transfer to memory 
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I/O Channels and Processors (6.6) 

• Past DMA, we see two evolutionary developments to the I/O module  

o The I/O Channel enhances the I/O module to become a processor in its own right  
§ CPU directs I/O module to execute a sequence of special I/O instructions in 

memory  
§ I/O channel fetches and executes these instructions without CPU intervention  
§ The CPU is only interrupted when the entire sequence is completed  

o The I/O Processor has a local memory of its own, and is a computer in its own right, 
allowing a large set of devices to be controlled with minimal CPU involvement 

• Two common types of I/O channels  

o A selector channel  
§ controls multiple high-speed devices  
§ is dedicated to transfer of data with one device at a time  
§ each device is handled by a controller that is very similar to an I/O module  
§ the I/O channel serves in place of the CPU in controlling these I/O controllers 

o A multiplexor channel  
§ Handles I/O with multiple controllers at once  
§ Low speed devices use a byte multiplexor  
§ High speed devices use a block multiplexor 

 
The External Interface (6.7) 

• Types of interfaces  

o Parallel interface - multiple lines connect the I/O module and the peripheral, and 
multiple bits are transferred simultaneously 

o Serial interface - only one line is used to transmit data, one bit at a time 

• Typical dialog between I/O module and peripheral (for a write operation)  

o The IO module sends a control signal requesting permission to send data  

o The peripheral ACK’s the request  

o The I/O module transfers the data  

o The peripheral ACK’s receiving the data  

• Buffer in I/O module compensates for speed differences 

• Point-to-Point and Multipoint Configurations  

o Point-to-point interface  
§ provides a dedicated line between the I/O module and the external device  
§ examples are keyboard, printer, modem  

o Multipoint interface  
§ in effect are external buses  
§ examples are SCSI, USB, IEEE 1394 (FireWire), and even IDE 
 

• SCSI (Small Computer System Interface)  

o Standards  
§ SCSI-1 (early ‘80’s)  

§ 8 data lines  
§ data rate of 5Mb/s  
§ up to 7 devices daisy-chained to interface  
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§ SCSI-2 (1991)  
§ usually what is meant today by “SCSI”  
§ 16 or 32 data lines  
§ data rate of 20Mb/s or 40Mb/s (dep. on data lines)  
§ up to 16 devices daisy-chained to interface 
§ includes commands for the following device types:  

§ direct-access devices  
§ sequential-access devices  
§ printers  
§ processors  
§ write-once devices  
§ CD-ROM’s  
§ scanners  
§ optical memory devices  
§ medium-changer devices  
§ communication devices  

§ SCSI-3 (still in development)  
§ doubles speed of SCSI-2  
§ includes “serial SCSI”, which is basically FireWire 

o Basically defines a high-speed external bus  
§ has its own arbitration  
§ communication can take place between devices (such as disk to tape) without 

involving the CPU or other internal buses at all  
§ reselection - if a command is issued that takes some time to complete, the 

target can release the bus and reconnect to the initiator later 

• P1394 Serial Bus (FireWire)  

o Basic features  
§ very high-speed - up to 400Mbps  
§ serial transmission  

§ requires less wires  
§ allows simple connector  
§ less potential for damage  
§ requires less shielding w/ no synchronization problems  
§ cheaper  

§ physically small - suitable for handheld computers and other small consumer 
electronics 

o Details  
§ Uses a daisy chain configuration  

§ up to 63 devices off a single port  
§ up to 1022 P1394 buses can be interconnected using bridges  

§ Supports hot plugging - peripherals can be connected and disconnected 
without power down or reconfiguration  

§ Supports automatic configuration  
§ no manual configuration of device ID’s required  
§ relative positioning of devices unimportant  

§ Strict daisy-chain not required - trees possible 
§ Basically sets up a bridged bus-type network as the I/O bus  

§ data and control information (such as for arbitration) is transferred in 
packets  

§ can function asynchronously  
§ using variable amounts of data and larger packet headers w/ 

ACK needed  
§ for devices with intermittent need for the bus  
§ can use fair or urgent arbitration  

§ can function isochronously  
§ using fixed-size packets transmitted at regular intervals  
§ for devices that regularly transmit or consume data, such as 

digital sound or video 
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II. THE COMPUTER SYSTEM.  
3. ... 
4. ... 
5. ... 
6. ... 
7. Operating System Support. (30-Mar-98) 

 
 
Introduction (7.1) 

• From an architectural viewpoint, the most important function of an operating system is 
resource management  

o It controls the movement and storage of data  

o It allows access to peripheral devices  

o It controls which sets of instructions are allowed to process data at a particular time 

• But it is an unusual control mechanism, in that:  

o It functions in the same way as ordinary computer software -- it is a program executed 
by the CPU  

o It frequently relinquishes control and must depend on the CPU to allow it to regain 
control 

 
Scheduling (7.2) 

• The central task of modern operating systems is multiprogramming - allowing multiple jobs or 
user programs to be executed concurrently.  

• A better term than job (which is rooted in the old batch systems) is process. Several 
definitions:  

o A program in execution  

o The “animated spirit” of a program  

o That entity to which a processor is assigned 

 
 
High-Level Scheduling  

• High-level scheduling  

o Determines which programs are admitted to the system for processing  

o Executes relatively infrequently  

o Controls the degree of multiprogramming (number of processes in memory)  

o Batch systems can make system optimizing decisions on which jobs to add, priorities 
to assign, etc.  

o Once admitted, a job or program becomes a process and is added to a queue for the 
short-term scheduler 

 
Short-Term Scheduling  

• The short-term scheduler, or dispatcher  

o determines which process (of those permitted by the high-level scheduler) gets to 
execute next  

o executes frequently  
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• Process States - for short-term scheduling, a process is understood to be in one of 5 basic 
states  

o New - admitted by the high-level scheduler, but not yet ready to execute 

o Ready - needs only the CPU  

o Running - currently executing in the CPU  

o Waiting - suspended from execution, waiting for some system resource  

o Halted - the process has terminated and will be destroyed by the operating system 

 
• Memory Pointers - starting and ending points of the process in memory (used for memory 

management  

• Context Data - processor register values 

• The OS maintains state information for each process in a process control block (PCB), which 
contains: 

§ Scheduling Techniques  
§ The OS maintains queues of PCB’s for each process state  
§ The long term scheduler determines which processes are admitted from New 

to Ready  
§ The short-term scheduler determines which processes are dispatched from 

Ready to Running  
§ Usually done round-robin  
§ Priorities may be used 

• At some point in time, a process in the Running state will cease execution and the OS will 
begin execution. 3 reasons:  

o The running process issued a service call to the OS, such as an I/O request  

o The running process (or some device associated with it) causes an interrupt, such as 
from an error or a timer interrupt  

o Some event unrelated to the running process causes an interrupt, such as I/O 
completion 

• When the OS begins execution to handle an interrupt or service request (which is often 
handled as an interrupt), it:  

o Saves the context of the running process in the PCB.  

o Preempts that PCB from RUNNING to READY if it still has all resources it needs, or 
blocks to WAITING (usually in an I/O queue) if it does not  

o Handles the interrupt  
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o Executes the short-term scheduler to pick the next process to dispatch from 
RUNNING to READY 

• Organizational support  

o The mode bit in the CPU  

o Privileged instruction support in the CPU  

o The CPU timer device (a module on the bus) 
 
Memory Management (7.3) 

• Swapping  

o Used when all processes currently in the system become blocked waiting for I/O  

o Some waiting processes are swapped out to an intermediate queue in disk storage  

o Other processes (which have all the resources they need) are admitted from the long-
term queue or swapped in from the intermediate queue to keep the processor busy 

• Partitioning  

o Memory is partitioned among running processes  
§ the OS kernel (or nucleus) occupies a fixed portion of main memory  
§ remaining memory is partitioned among the other processes  

§ fixed-size partitions - different sized partitions are pre-set, and 
processes are loaded into the smallest that will work. Low processing 
overhead, but wasteful.  

§ variable-size partitions - a process is allocated exactly as much 
memory as it requires. Fragmentation can still occur to waste 
memory, however.  

§ Requires that program addresses be logical addresses - relative to beginning 
of program. 

o Organizational support in the CPU for partitioning  
§ base address register  
§ limit register 

• Paging  

o Extends partition idea by dividing up both memory and processes into equal size 
pieces  
§ pieces of memory are called frames  
§ pieces of a process are called pages  

o Each process has a list of frames that it is using, called a page table, stored in the 
PCB  

o The OS maintains a list of free frames that it can assign to new processes  

o Only waste is a end of a process’s last page  

o Logical addresses become (frame #, rel. addr) 

o Organizational support for paging  
§ page table address register in the CPU  
§ cache support for page table lookups 

• Virtual Memory  

o Refines paging by demand paging - each page of a process is brought in only when 
needed, that is, on demand.  

o Obeys the principle of locality, similar to caching  

o If a page is needed which is not in memory, a page fault is triggered, which requires 
an I/O operation 
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o Pages currently in memory may have to be replaced. In some situations this can lead 
to thrashing, where the processor spends too much time swapping the same pages in 
and out.  

o Advantages  
§ Less pages per process, more processes at a time  
§ Unused pages are not swapped in and out anyway  
§ Programs can be longer than all of main memory  

§ Main memory, where processes execute is referred to as real 
memory  

§ The memory perceived by the programmer or user is called virtual 
memory 

o Page Table Structure  
§ Basic mechanism for reading a word from memory involves using a page 

table to translate  
§ a virtual address - page number and offset  

into  
§ a physical address - frame number and offset 

o Page tables may be very large  
§ they cannot be stored in registers  
§ they are often stored in virtual memory (so are subject to paging!)  
§ sometimes a page directory is used to organize many pages of page tables. 

Pentium uses such a two-level structure  
§ sometimes an inverted page table structure is used to map a virtual address 

to a real address using a hash on the page number of the virtual address. 
AS/400 and PowerPC use this idea. 

o Organizational support  
§ Translation Lookaside Buffer (TLB)  

§ Avoids problem that every virtual memory reference can cause 2 
physical memory accesses  
§ one to fetch appropriate page table entry  
§ one to fetch desired data  

§ TLB is a special cache, just for page table entries  
§ Result of address resolution then uses regular cache for fetch 

• Segmentation  

o Segmentation allows programmer to view memory as multiple address spaces, or 
segments  
§ Unlike virtual memory, segmentation is not transparent to the programmer  
§ Advantages  

§ Simplifies handling of growing data structures - OS will expand or 
shrink segment as needed  

§ Simplifies separate compilation  
§ Lends itself to sharing among processes  
§ Lends itself to protection - programmer or sysadmin can assign 

access privileges to a segment 
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III. THE CENTRAL PROCESSING UNIT.  
8. Computer Arithmetic. (19-Apr-99) 
 
 
 
Integer Representation (8.2) 

• Sign-Magnitude Representation  

o Leftmost bit is sign bit: 0 for positive, 1 for negative  

o Remaining bits are magnitude  

o Drawbacks  
§ Addition and subtraction must consider both the signs and relative 

magnitudes -- more complex  
§ Testing for zero must consider two possible zero representations 

• Two’s Complement Representation  

o Leftmost bit still indicates sign  

o Positive numbers exactly same as sign-magnitude  

o Zero is only all zeroes (positive)  

o Negative numbers found by taking 2’s complement  
§ Take complement of positive version  
§ Add 1 

 
Integer Arithmetic (8.3) 

• 2’s complement examples (with 8 bit numbers)  

o Getting -55  
§ Start with +55: 0110111  
§ Complement that: 1001000  
§ Add 1: +0000001  
§ Total is -55: 1001001  

o Negating -55  
§ Complement -55: 0110110  
§ Add 1: +0000001  
§ Total is 55 (see top) 0110111  

o Adding -55 + 58  
§ Start with -55: 1001001  
§ Add 58: +0111010  
§ Result is 3: 0000011  
§ Overflow into and out-of sign bit is ignored 

• Overflow Rule - if two numbers are added, and they are both positive or both negative, then 
overflow occurs if and only if the result has the opposite sign  

• Converting between different bit lengths  

o Move sign bit to new leftmost position  

o Fill in with copies of the sign bit  

o Examples (8 bit -> 16 bit)  
§ +18: 00010010 ->  0000000000010010  
§ -18: 11101110 ->  1111111111101110 
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• Multiplication  

o Repeated Addition  

o Unsigned Integers  
§ Generating partial products, shifting, and adding  
§ Just like longhand multiplication  

• Two’s Complement Multiplication  

o Straightforward multiplication will not work if either the multiplier or multiplicand are 
negative  
§ multiplicand would have to be padded with sign bit into a 2n-bit partial 

product, so that the signs would line up  
§ in a negative multiplier, the 1’s and 0’s would no longer correspond to add-

shift’s and shift-only’s  

o Simple solution  
§ Convert both multiplier and multiplicand to positive numbers  
§ Perform multiplication  
§ Take 2’s complement of result if and only if the signs of original numbers were 

different  
§ Other methods do not require this final transformation step 

• Booth’s Algorithm  

• Why does Booth’s Algorithm work?  

o Consider multiplying some multiplicand M by 30: M * (00011110) which would take 4 
shift-adds of M (one for each 1)  

o That is the same as multiplying M by (32 - 2): M * (00100000 - 00000010) = M * 
(00100000) - M * (00000010) which would take:  
§ 1 shift-only on no transition (imagine last bit was 0)  
§ 1 shift-subtract on the transition from 0 to 1  
§ 3 shift-only’s on no transition  
§ 1 shift-add on the transition from 1 to 0  
§ 2 shift-only’s on no transition  

o We can extend this method to any number of blocks of 1’s, including blocks of unit 
length.  

o Consider the smallest number of bits that can hold the 2’s complement representation 
of -6: So we can clearly see that a shift-subtract at the leftmost 1-0 transition will 
cause 8 to be subtracted from the accumulated total, which is exactly what needs to 
happen!  

o This will expand to an 8-bit representation: The neat part is that this same (and only) 
1-0 transition will also cause -8 to be subtracted from the 8-bit version! 

• Division  

o Unsigned integers 00001101 Quotient Divisor 1011 10010011 Dividend 1011 001110 
1011 001111 1011 100 Remainder 

 
Floating-Point Representation (8.4) 

• Principles  

o Using scientific notation, we can store a floating point number in 3 parts ±S * B±E :  
§ Sign  
§ Significand (or Mantissa)  
§ Exponent  
§ (The Base stays the same, so need not be stored)  



  52 

Universidade do Minho – Dep. Informática - Campus de Gualtar – 4710-057 Braga - PORTUGAL- http://www.di.uminho.pt 
William Stallings, “Computer Organization and Architecture”, 5th Ed., 2000 

o The sign applies to the significand. Exponents use a biased representation, where a 
fixed value called the bias is subtracted from the field to get the actual exponent. 

• We require that numbers be normalized, so that the decimal in the significand is always in the 
same place  

o we will choose just to the right of a leading 0  

o format will be ±0.1bbb… b * 2±E  

o thus, it is unnecessary to store either that leading 0, or the next 1, since all numbers 
will have them  

o for the example following, assume also:  
§ An 8 bit sign with a bias of 128  
§ A 24-bit significand stored in a 23-bit field 

• Example Ranges  

 

o This compares to a range of –2^31 to 2^31-1 for 2’s complement integers for the 
same 32 bits  

o There is more range, but no more individual values  

o FP numbers are spaced unevenly along the number line  
§ More densely close to 0, less densely further from 0  
§ Demonstrates tradeoff between range and precision  
§ Larger exponent gives more range, larger significand gives more precision 

• IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754)  

o Facilitates portability of programs from one processor to another  

o Defines both 32-bit single and 64-bit double formats 
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o Defines some parameters for extending those formats for more range or more 
precision 

• Classes of numbers represented:  

o Positive or Negative Zero - an exponent of 0, together with a fraction of zero (sign bit 
determines sign).  

o Positive or Negative Infinity - an exponent of all 1’s, together with a fraction of zero 
(sign bit determines sign).  

o Denormalized Numbers - an exponent of all 1’s except the least significant (which is -
0). The fraction is the portion of the significand to the right of the decimal (0 is 
assumed to the left). Note that the fraction does NOT have an implied leftmost one.  

o NaN (Not a Number) - an exponent of all ones, together with a non-zero fraction. 
Used to signal various exception conditions.  

o Normalized, Non-Zero Floating Point Numbers - everything else. 

• Potential problems:  

o Exponent Overflow - the number is too large to be represented, may be reported as 
+infinity  or -infinity .  

o Exponent Underflow - the number is too small to be represented, may be reported as 
0.  

o Significand Underflow - during alignment of significands, digits may flow off the right 
end, requiring some form of rounding.  

o Significand Overflow - adding two significands with the same sign may result in a carry 
out of the most significant bit, fixed by realignment. 

 
Floating Point Arithmetic (8.5) 

• Addition and Subtraction  

o More complex than multiplication and division  

o 4 basic phases  
§ Check for zeros  
§ Align the significands  
§ Add or subtract the significands  
§ Normalize the result  

o The two operands must be transferred to registers in the ALU  
§ implicit significand bits must be made explicit  
§ exponents and significands usually stored in separate registers 

o If subtraction, change sign of subtrahend  

o If either operand is 0, report other as result  

o Manipulate the numbers so that the two exponents are equal  
§ Ex. 123 x 10^0 + 456 x 10^-2 = 123 x 10^0 + 4.56 x 10^0 = 127.56 x 10^0  
§ Done by shifting smaller number to the right  

§ Simultaneously incrementing the exponent  
§ Stops when exponents are equal  
§ Digits lost are of relatively small importance  
§ If significand becomes 0, report other as result 

o The numbers are added together  
§ Signs are taken into account, so zero may result  
§ If significand overflows, the significand of the result is shifted right, and the 

exponent is incremented  
§ If exponent then overflows, it is reported and operation halted  
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o Normalize the result  
§ significand digits are shifted left until the most significant digit is non-zero  
§ exponent is decremented for each shift  
§ If exponent underflows, report it and halt  

o Round result and store in proper format 

• Multiplication  

o The two operands must be transferred to registers in the ALU  

o If either operand is 0, report 0 as result  

o Add the exponents  
§ If a biased exponent is being used, subtract the extra bias from the sum  
§ Check for exponent overflow or underflow. Report it and halt if it occurs. 

o Multiply the significands  
§ Same as for integers, but sign-magnitude representation  
§ Product will be double length of multiplier and multiplicand, but extra bits will 

be lost during rounding  

o Result is normalized and rounded  
§ Same as for addition and subtraction  
§ Thus, exponent underflow could result  

• Division  

o The two operands must be transferred to registers in the ALU  

o Check for 0  
§ If divisor is 0, report error and either set result to infinity or halt operation  
§ if dividend is 0, report 0 as result  

o Subtract divisor exponent from dividend exponent  
§ If a biased exponent is being used, add the bias back in.  
§ Check for exponent overflow or underflow. Report it and halt if it occurs. 

o Divide the significands  
§ Same as for integers, but sign-magnitude representation  

o Result is normalized and rounded  
§ Same as for addition and subtraction  
§ Thus, exponent underflow could result  

• Precision Considerations  

o Guard Bits  
§ Extra bits that pad out the right end of the significand with 0’s  
§ Used to prevent loss of precision when adding numbers which are very close 

in value  
§ Example without guard bits:  
  1.0000000 * 2^1 + 
 -1.1111111 * 2^0 = 
  1.0000000 * 2^1 + 
 -0.1111111 * 2^1 = 
  0.0000001 * 2^1 Normalized to: 
  1.0000000 * 2^-7 
§ Example with guard bits: 
  1.00000000 * 2^1+ 
 -1.11111110 * 2^0 = 
  1.00000000 * 2^1 + 
 -0.11111111 * 2^1 = 
  0.00000001 * 2^1 Normalized to: 
  1.00000000 * 2^-8  
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§ Notice the order of magnitude difference in results! Difference is worse with 
base-16 architectures. 

o Rounding  
§ 4 alternative approaches with IEEE standard  
§ Round to Nearest  
§ Result is rounded to nearest representable number  
§ Default rounding mode  
§ The representable value nearest to the infinitely precise result shall be 

delivered * if excess bits are less than half of last representable bit, 
round down * if excess bits are half or more of last representable bit, 
round up * if they are equally close, use the one with LSB 0 

§ Round Toward + infinity and -infinity  
§ Result is rounded up toward positive infinity or Result is rounded down 

toward negative infinity  
§ Useful in implementing interval arithmetic * every calculation in a 

sequence is done twice -- once rounding up, and once rounding down, 
producing upper and lower bounds on the result. * if resulting range is 
narrow enough, then answer is sufficiently accurate * useful because 
hardware limitations cause rounding  

§ Round Toward 0  
§ Result is rounded toward 0  
§ Just simple truncation  
§ Result is always less than or equal to the more precise original value, 

introducing a consistent downward bias 

• IEEE Standard for Floating Point Arithmetic  

o Infinity  
§ Most operations involving infinity yield infinity  
§ Signs obey usual laws  
§ -infinity -infinity  yields -infinity  and +infinity +infinity  yields +infinity   

o Quiet and Signaling NaN’s  
§ A signaling NaN causes an exception (which may be handled by the program, 

or may cause an error) 

• A quiet NaN propagates through operations in an expression without signaling an exception. 
They are produced by:  

o Any operation on a signaling NaN  

o Magnitude subtraction of infinities (where you might expect a zero result)  

o 0 x infinity   

o (0 / 0) or (infinity / infinity ). Note that x / 0 is always an exception.  

o (x MOD 0) or (infinity MOD y)  

o square-root of x, where x < 0 

• Denormalized Numbers  

o Used in case of exponent underflow  

o When the exponent of the result is too small ( a negative exponent with too large a 
magnitude) the result is denormalized  
§ right-shifting the fraction  
§ incrementing the exponent for each shift, until it is all ones with a final 0  

o Referred to as gradual underflow, use of denormalized numbers:  
§ fills the gap between the smallest representable non-zero number and 0  
§ reduces the impact of exponent underflow to a level comparable to round off 

among the normalized numbers 
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III. THE CENTRAL PROCESSING UNIT.  

8. ... 
9. ... 
10. ... 
11. CPU Structure and Function. (29-Apr-98) 
 
  

Processor Organization (11.1) 

• Things a CPU must do:  

o Fetch Instructions  

o Interpret Instructions  

o Fetch Data  

o Process Data  

o Write Data  

• A small amount of internal memory, called the registers, is needed by the CPU to fulfill these 
requirements 

 
Register Organization (11.2) 

• Registers are at top of the memory hierarchy. They serve two functions:  

o User-Visible Registers - enable the machine- or assembly-language programmer to 
minimize main-memory references by optimizing use of registers  

o Control and Status Registers - used by the control unit to control the operation of the 
CPU and by privileged, OS programs to control the execution of programs 

• User-Visible Registers  

o Categories of Use  
§ General Purpose  
§ Data  
§ Address  
§ Segment pointers - hold base address of the segment in use  
§ Index registers - used for indexed addressing and may be auto indexed  
§ Stack Pointer - a dedicated register that points to top of a stack. Push, 

pop, and other stack instructions need not contain an explicit stack 
operand.  

§ Condition Codes 

o Design Issues  
§ Completely general-purpose registers, or specialized use?  

§ Specialized registers save bits in instructions because their use can 
be implicit  

§ General-purpose registers are more flexible  
§ Trend is toward use of specialized registers  

§ Number of registers provided?  
§ More registers require more operand specifier bits in instructions  
§ 8 to 32 registers appears optimum (RISC systems use hundreds, but 

are a completely different approach) 
§ Register Length?  

§ Address registers must be long enough to hold the largest address  
§ Data registers should be able to hold values of most data types  
§ Some machines allow two contiguous registers for double-length 

values  
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§ Automatic or manual save of condition codes?  
§ Condition restore is usually automatic upon call return  
§ Saving condition code registers may be automatic upon call 

instruction, or may be manual 

• Control and Status Registers  

o Essential to instruction execution  
§ Program Counter (PC)  
§ Instruction Register (IR)  
§ Memory Address Register (MAR) - usually connected directly to address lines 

of bus  
§ Memory Buffer Register (MBR) - usually connected directly to data lines of 

bus 

o Program Status Word (PSW) - also essential, common fields or flags contained 
include:  
§ Sign - sign bit of last arithmetic op  
§ Zero - set when result of last arithmetic op is 0  
§ Carry - set if last op resulted in a carry into or borrow out of a high-order bit  
§ Equal - set if a logical compare result is equality  
§ Overflow - set when last arithmetic operation caused overflow  
§ Interrupt Enable/Disable - used to enable or disable interrupts  
§ Supervisor - indicates if privileged ops can be used 

o Other optional registers  
§ Pointer to a block of memory containing additional status info (like process 

control blocks)  
§ An interrupt vector  
§ A system stack pointer  
§ A page table pointer  
§ I/O registers  

o Design issues  
§ Operating system support in CPU  
§ How to divide allocation of control information between CPU registers and first 

part of main memory (usual tradeoffs apply) 

• Example Microprocessor Register Organization 
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The Instruction Cycle (11.3) 

• Review: Basic instruction cycle contains the following sub-cycles (some repeated)  

 

o Fetch - read next instruction from memory into CPU  

o Execute - Interpret the opcode and perform the indicated operation  

o Interrupt - if interrupts are enabled and one has occurred, save the current process 
state and service the interrupt 

• The Indirect Cycle  

o Think of as another instruction sub-cycle  

o May require just another fetch (based upon last fetch)  

o Might also require arithmetic, like indexing 

• Data Flow  

o Exact sequence depends on CPU design  

o We can indicate sequence in general terms, assuming CPU employs:  
§ a memory address register (MAR)  
§ a memory buffer register (MBR)  
§ a program counter (PC)  
§ an instruction register (IR)  

• Fetch cycle data flow  

o PC contains address of next instruction to be fetched  

o This address is moved to MAR and placed on address bus  

o Control unit requests a memory read  

o Result is  
§ placed on data bus  
§ result copied to MBR  
§ then moved to IR  

o Meanwhile, PC is incremented 

• Indirect cycle data flow  

o After fetch, control unit examines IR to see if indirect addressing is being used. If so:  

o Rightmost n bits of MBR (the memory reference) are transferred to MAR  

o Control unit requests a memory read, to get the desired operand address into the 
MBR  

• Instruction cycle data flow  
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o Not simple and predictable, like other cycles  

o Takes many forms, since form depends on which of the various machine instructions 
is in the IR  

o May involve  
§ transferring data among registers  
§ read or write from memory or I/O  
§ invocation of the ALU 

• Interrupt cycle data flow  

o Current contents of PC must be saved (for resume after interrupt), so PC is 
transferred to MBR to be written to memory  

o Save location’s address (such as a stack ptr) is loaded into MAR from the control unit  

o PC is loaded with address of interrupt routine (so next instruction cycle will begin by 
fetching appropriate instruction) 

 
 
Instruction Pipelining (11.4) 

• Concept is similar to a manufacturing assembly line  

o Products at various stages can be worked on simultaneously  

o Also referred to as pipelining, because, as in a pipeline, new inputs are accepted at 
one end before previously accepted inputs appear as outputs at the other end 

• Consider subdividing instruction processing into two stages:  

o Fetch instruction  

o Execute instruction  

• During execution, there are times when main memory is not being accessed.  

• During this time, the next instruction could be fetched and buffered (called instruction prefetch 
or fetch overlap). 

• If the Fetch and Execute stages were of equal duration, the instruction cycle time would be 
halved.  

• However, doubling of execution time is unlikely because:  

o Execution time is generally longer than fetch time (it will also involve reading and 
storing operands, in addition to operation execution)  

o A conditional branch makes the address of the next instruction to be fetched unknown 
(although we can minimize this problem by fetching the next sequential instruction 
anyway)  

• To gain further speedup, the pipeline must have more stages. Consider the following 
decomposition of instruction processing:  

o Fetch Instruction (FI)  

o Decode Instruction (DI) - determine opcode and operand specifiers  

o Calculate Operands (CO) - calculate effective address of each source operand  

o Fetch Operands (FO)  

o Execute Instruction (EI)  

o Write Operand (WO) 
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• Timing diagram, assuming 6 stages of fairly equal duration and no branching 

 

Notes on the diagram  

o Each instruction is assumed to use all six stages  
§ Not always true in reality  
§ To simplify pipeline hardware, timing is set up assuming all 6 stages will be 

used  

o It assumes that all stages can be performed in parallel  
§ Not actually true, especially due to memory access conflicts  
§ Pipeline hardware must accommodate exclusive use of memory access lines, 

so delays may occur  
§ Often, the desired value will be in cache, or the FO or WO stage may be null, 

so pipeline will not be slowed much of the time 

• If the six stages are not of equal duration, there will be some waiting involved for shorter 
stages  

• The CO (Calculate Operands) stage may depend on the contents of a register that could be 
altered by a previous instruction that is still in the pipeline  

• It may appear that more stages will result in even more speedup  

o There is some overhead in moving data from buffer to buffer, which increases with 
more stages  

o The amount of control logic for dependencies, etc. for moving from stage to stage 
increases exponentially as stages are added  

• Conditional branch instructions and interrupts can invalidate several instruction fetches 
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Dealing with Branches  

• A variety of approaches have been taken for dealing with conditional branches:  

o Multiple Streams  
§ Instead of choosing one of the two instructions, replicate the initial portions of 

the pipeline and allow it to fetch both instructions, making use of two streams.  
§ Problems:  
§ Contention delays for access to registers and memory  
§ Additional branch instructions may enter either stream of the pipeline before 

the original branch decision is resolved  
§ Examples: IBM 370/168 and IBM 3033 

o Prefetch Branch Target  
§ The target of the branch is prefetched, in addition to the instruction following 

the branch. The target is saved until the branch instruction is executed, so it is 
available without fetching at that time.  

§ Example: IBM 360/91  

o Loop Buffer  
§ A small, very-high-speed memory maintained by the instruction fetch stage of 

the pipeline  
§ contains the n most recently fetched instructions, in sequence  
§ if a branch is to be taken, the buffer is checked first and the next 

instruction fetched from it instead of memory 
§ Benefits  

§ It will often contain an instruction sequentially ahead of the current 
instruction, which can be used for prefetching  

§ If a branch occurs to a target just a few locations ahead of the branch 
instruction, the target may already be in the buffer (especially useful 
for IF-THEN and IF-THEN-ELSE sequences)  

§ As implied by the name, if the buffer is large enough to contain all the 
instructions in a loop, they will only have to be fetched from memory 
once for all the consecutive iterations of that loop  

§ Similar in principle to an instruction cache, but  
§ it only holds instructions in sequence  
§ smaller and thus lower cost  

§ Examples: CDC Star-100, 6600, 7600 and CRAY-1 

o Branch Prediction  
§ Try to predict which branch will be taken, and prefetch that instruction  
§ Static techniques  

§ Predict Never Taken  
§ Assume that the branch will not be taken and continue to 

fetch in sequence  
§ Examples: Motorola 68020 and VAX 11/780  

§ Predict Always Taken  
§ Assume that the branch will always be taken, and always 

fetch the branch target  
§ Studies show that conditional branches are taken more than 

50% of the time 
NOTE: Prefetching the branch target is more likely to cause a 
page fault; so paged machines may employ an avoidance 
mechanism to reduce this penalty.  

§ Predict by Opcode  
§ Assume that the branch will be taken for certain branch 

opcodes and not for others  
§ Studies report success rates of greater than 75% 
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§ Dynamic Techniques  
§ Taken/Not Taken Switch  

§ Assume that future executions of the same branch instruction 
will branch the same way  

§ Associate one or two extra bits with the branch instruction in 
high-speed memory (instruction cache or loop buffer) 
indicating whether it was taken the last one or two times  

§ Two bits allow events like loops to only cause one wrong 
prediction instead of two  

§ Example: IBM 3090/400 
§ Branch History Table  

§ Solves problem with Taken/Not Taken Switch, to wit: If 
decision is made to take the branch, the target instruction 
cannot be fetched until the target address is decoded  

§ Branch History Table is a small cache memory associated 
with the instruction fetch stage of the pipeline. Each entry 
has: >> the address of a branch instruction >> some number 
of history bits that record the state of use of that instruction 
>> effective address of target instruction (already calculated) 
or the target instruction itself  

§ Example: AMD29000 

o Delayed Branch  
§ Sometimes code can be optimized so that branch instructions can occur later 

than originally specified  
§ Allows pipeline to stay full longer before potential flushing  
§ More detail in chapter 12 (RISC) 

 
Intel 80486 Pipelining (11.5) 

o Uses a 5-stage pipeline  
§ Fetch - instructions are prefetched into 1 of 2 16-byte prefetch buffers.  

§ Buffers are filled as soon as old data is consumed by instruction 
decoder  

§ Instructions are variable length (1-11 bytes)  
§ On average, about 5 instructions are fetched with each 16-byte load  
§ Independent of rest of pipeline  

§ Decode Stage 1  
§ Opcode and addressing mode info is decoded  
§ This info always occurs in first 3 bytes of instruction  

§ Decode Stage 2  
§ Expands each opcode into control signals for the ALU  
§ Computation of more complex addressing modes  

§ Execute  
§ ALU operations  
§ cache access  
§ register update 

§ Write Back  
§ May not be needed  
§ Updates registers and status flags modified during Execute stage  
§ If current instruction updates memory, the computed value is sent to 

the cache and to the bus-interface write buffers at the same time  

o With 2 decode stages, can sustain a throughput of close to 1 instruction per clock 
cycle (complex instructions and conditional branches cause slowdown) 
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III. THE CENTRAL PROCESSING UNIT.  

8. ... 
9. ... 
10. ...  
11. ... 
12. Reduced Instruction Set Computers (RISCs). (5-Jan-01) 
  
 

 
Introduction  

• RISC is one of the few true innovations in computer organization and architecture in the last 
50 years of computing.  

• Key elements common to most designs:  

o A limited and simple instruction set  

o A large number of general purpose registers, or the use of compiler technology to 
optimize register usage  

o An emphasis on optimizing the instruction pipeline 

 
 
Instruction Execution Characteristics (12.1) 

• Overview 

o Semantic Gap - the difference between the operations provided in high-level 
languages and those provided in computer architecture  

o Symptoms of the semantic gap:  
§ Execution inefficiency  
§ Excessive machine program size  
§ Compiler complexity  

o New designs had features trying to close gap:  
§ Large instruction sets  
§ Dozens of addressing modes  
§ Various HLL statements in hardware 

o Intent of these designs:  
§ Make compiler-writing easier  
§ Improve execution efficiency by implementing complex sequences of 

operations in microcode  
§ Provide support for even more complex and sophisticated HLL's  

o Concurrently, studies of the machine instructions generated by HLL programs  
§ Looked at the characteristics and patterns of execution of such instructions  
§ Results lead to using simpler architectures to support HLL's, instead of more 

complex 

o To understand the reasoning of the RISC advocates, we look at study results on 3 
main aspects of computation:  
§ Operations performed - the functions to be performed by the CPU and its 

interaction with memory.  
§ Operands used - types of operands and their frequency of use. Determine 

memory organization and addressing modes.  
§ Execution Sequencing - determines the control and pipeline organization.  

o Study results are based on dynamic measurements (during program execution), so 
that we can see effect on performance 
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• Operations  

o Simple counting of statement frequency indicates that assignment (data movement) 
predominates, followed by selection/iteration.  

o Weighted studies show that call/return actually accounts for the most work  

o Target architectural organization to support these operations well 

o Patterson study also looked at dynamic frequency of occurrence of classes of 
variables. Results showed a preponderance of references to highly localized scalars:  
§ Majority of references are to simple scalars  
§ Over 80% of scalars were local variables  
§ References to arrays/structures require a previous ref to their index or pointer, 

which is usually a local scalar 
 

• Operands  

o Another study found that each instruction (DEC-10 in this case) references 0.5 
operands in memory and 1.4 registers.  

o Implications:  
§ Need for fast operand accessing  
§ Need for optimized mechanisms for storing and accessing local scalar 

variables 
 

• Execution Sequencing  

o Subroutine calls are the time-consuming operation in HLL's  

o Minimize their impact by  
§ Streamlining the parameter passing  
§ Efficient access to local variables  
§ Support nested subroutine invocation 

o Statistics  
§ 98% of dynamically called procedures passed fewer than 6 parameters  
§ 92% use less than 6 local scalar variables  
§ Rare to have long sequences of subroutine calls followed by returns (e.g., a 

recursive sorting algorithm)  
§ Depth of nesting was typically rather low  

 

• Implications  

o Reducing the semantic gap through complex architectures may not be the most 
efficient use of system hardware  

o Optimize machine design based on the most time-consuming tasks of typical HLL 
programs 

o Use large numbers of registers  
§ Reduce memory reference by keeping variables close to CPU (more register 

refs instead)  
§ Streamlines instruction set by making memory interactions primarily loads and 

stores  

o Pipeline design  
§ Minimize impact of conditional branches  

o Simplify instruction set rather than make it more complex 
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Large Register Files (12.2) 

• How can we make programs use registers more often?  

o Software - optimizing compilers  
§ Compiler attempts to allocate registers to those variables that will be used 

most in a given time period  
§ Requires sophisticated program-analysis algorithms  

o Hardware  
§ Make more registers available, so that they'll be used more often by ordinary 

compilers  
§ Pioneered at Berkeley by first commercial RISC product, the Pyramid 

 

• Register Windows  

o Naively adding registers will not effectively reduce need to access memory  
§ Since most operand references are to local scalars, obviously store them in 

registers, with maybe a few for global variables  
§ Problem: Definition of local changes with each procedure call and return 

(which happen a lot!)  
§ On call, locals must be moved from registers to memory to make room for 

called subroutine  
§ Parameters must be passed  
§ On return, parent variables must move back to registers 

o Remember study results:  
§ A typical procedure uses only a few passed parameters and local 

variables  
§ The depth of procedure activation fluctuates within a relatively narrow 

range  

o So:  
§ Use multiple small sets of registers, each assigned to a different 

procedure  
§ A procedure call automatically switches the CPU to use a different fixed-

size window of registers (no saving registers in memory!)  
§ Windows for adjacent procedures are overlapped to allow parameter 

passing 

o Since there is a limit to number of windows, we use a circular buffer of windows  
§ Only hold the most recent procedure activations in register windows  
§ Older activations must be saved to memory and later restored  

§ An N-window register file can hold only N-1 procedure activations  
§ One study found that with 8 windows, a save or restore is needed 

on only 1% of calls or returns 

• Global variables  

o Could just use memory, but would be inefficient for frequently used globals  

o Incorporate a set of global registers in the CPU. Then, the registers available to a 
procedure would be split:  
§ some would be the global registers  
§ the rest would be in the current window.  

o Hardware would have to also:  
§ decide which globals to put in registers  
§ accommodate the split in register addressing 
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• Large Register File vs. Cache  

o Why not just build a big cache? Answer not clear cut  
§ Window holds all local scalars  
§ Cache holds selection of recently used data  
§ Cache can be forced to hold data it never uses (due to block transfers)  
§ Current data in cache can be swapped out due to accessing scheme used  
§ Cache can easily store global and local variables  
§ Addressing registers is cleaner and faster 

 
Compiler-Based Register Optimization (12.3) 

• In this case, the number of registers is small compared to the large register file implementation  

• The compiler is responsible for managing the use of the registers 

• Compiler must map the current and projected use of variables onto the available registers  

o Similar to a graph coloring problem  

o Form a graph with variables as nodes and edges that link variables that are active at 
the same time  

o Color the graph with as many colors as you have registers  

o Variables not colored must be stored in memory  
 
Reduced Instruction Set Architecture (12.4) 

• Why CISC?  

o CISC trends to richer instruction sets  
§ More instructions  
§ More complex instructions  

o Reasons  
§ To simplify compilers  
§ To improve performance 

• Are compilers simplified?  

o Assertion: If there are machine instructions that resemble HLL statements, compiler 
construction is simpler  

o Counter-arguments:  
§ Complex machine instructions are often hard to exploit because the compiler 

must find those cases that fit the construct  
§ Other compiler goals  

§ Minimizing code size  
§ Reducing instruction execution count  
§ Enhancing pipelining  

are more difficult with a complex instruction set  
§ Studies show that most instructions actually produced by CISC compilers are 

the relatively simple ones 

• Is performance improved?  

o Assertion: Programs will be smaller and they will execute faster  
§ Smaller programs save memory  
§ Smaller programs have fewer instructions, requiring less instruction fetching  
§ Smaller programs occupy fewer pages in a paged environment, so have 

fewer page faults  
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o Counter-arguments:  
§ Inexpensive memory makes memory savings less compelling 

• CISC programs may be shorter, but bits used for each instruction are more, so total memory 
used may not be smaller  

o Opcodes require more bits  

o Operands require more bits because they are usually memory addresses, as opposed 
to register identifiers (which are the usual case for RISC) 

• The entire control unit must be more complex to accommodate seldom used complex 
operations, so even the more often-used simple operations take longer  

• The speedup for complex instructions may be mostly due to their implementation as simpler 
instructions in microcode, which is similar to the speed of simpler instructions in RISC (except 
that the CISC designer must decide a priori which instructions to speed up in this way) 

 

• Characteristics of RISC Architectures  

o One instruction per cycle  
§ A machine cycle is defined by the time it takes to fetch two operands from 

registers, perform and ALU operation, and store the result in a register  
§ RISC machine instructions should be no more complicated than, and execute 

about as fast as microinstructions on a CISC machine  
§ No microcoding needed, and simple instructions will execute faster than their 

CISC equivalents due to no access to microprogram control store. 

o Register-to-register operations  
§ Only simple LOAD and STORE operations access memory  
§ Simplifies instruction set and control unit  

§ Ex. Typical RISC has 2 ADD instructions  
§ Ex. VAX has 25 different ADD instructions  

§ Encourages optimization of register use 

o Simple addressing modes  
§ Almost all instructions use simple register addressing  
§ A few other modes, such as displacement and PC relative, may be provided  
§ More complex addressing is implemented in software from the simpler ones  
§ Further simplifies instruction set and control unit 

o Simple instruction formats  
§ Only a few formats are used  

§ Further simplifies the control unit  
§ Instruction length is fixed and aligned on word boundaries  

§ Optimizes instruction fetching  
§ Single instructions don't cross page boundaries  

§ Field locations (especially the opcode) are fixed  
§ Allows simultaneous opcode decoding and register operand access 

• Potential benefits  

o More effective optimizing compilers  

o Simpler control unit can execute instructions faster than a comparable CISC unit  

o Instruction pipelining can be applied more effectively with a reduced instruction set  

o More responsiveness to interrupts  
§ They are checked between rudimentary operations  
§ No need for complex instruction restarting mechanisms 

• VLSI implementation  
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o Requires less "real estate" for control unit (6% in RISC I vs. about 50% for CISC 
microcode store)  

o Less design and implementation time  
 
RISC Pipelining (12.5) 

• The simplified structure of RISC instructions allows us to reconsider pipelining  

o Most instructions are register-to-register, so an instruction cycle has 2 phases  
§ I: Instruction Fetch  
§ E: Execute (an ALU operation w/ register input and output)  

o For load and store operations, 3 phases are needed  
§ I: Instruction fetch  
§ E: Execute (actually memory address calculation)  
§ D: Memory (register-to-memory or memory-to-register) 

• Since the E phase usually involves an ALU operation, it may be longer than the other phases. 
In this case, we can divide it into 2 sub phases:  

o E1: Register file read  

o E2: ALU operation and register write  
 
Optimization of Pipelining  

• Delayed Branch  

o We've seen that data and branch dependencies reduce the overall execution rate in 
the pipeline  

o Delayed branch makes use of a branch that does not take effect until after the 
execution of the following instruction  
§ Note that the branch "takes effect" during its execution phase  
§ So, the instruction location immediately following the branch is called the 

delay slot  
§ This is because the instruction fetching order is not affected by the branch 

until the instruction after the delay slot  
§ Rather than wasting an instruction with a NOOP, it may be possible to move 

the instruction preceding the branch to the delay slot, while still retaining the 
original program semantics. 

• Conditional branches  

o If the instruction immediately preceding the branch cannot alter the branch condition, 
this optimization can be applied  

o Otherwise a NOOP delay is still required.  

o Experience with both the Berkeley RISC and IBM 801 systems shows that a majority 
of conditional branches can be optimized this way. 

• Delayed Load  

o On load instructions, the register to be loaded is locked by the processor  

o The processor continues execution of the instruction stream until reaching an 
instruction needing a locked register  

o It then idles until the load is complete  

o If load takes a specific maximum number of clock cycles, it may be possible to 
rearrange instructions to avoid the idle.  

 
Superpipelining  

• A superpipelined architecture is one that makes use of more, and finer-grained, pipeline 
stages.  
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• The MIPS R3000 is an example of superpipelining  

o All instructions follow the same sequence of 5 pipeline stages (the 60-ns clock cycle is 
divided into two 30-ns phases)  

o But the activities needed for each stage may occur in parallel, and may not use an 
entire stage 

• Essentially then, we can break up the external instruction and data cache operations, and the 
ALU operations, into 2 phases  

 

• In general:  

o In a superpipelined system existing hardware is used several times per cycle by 
inserting pipeline registers to split up each pipe stage  

o Each superpipeline stage operates at a multiple of the base clock frequency  
o The multiple depends on the degree of superpipelining (the number of phases into 

which each stage is split)  

• The MIPS R4000 (which has improvements over the R3000 of the previous slide) is an 
example of superpipelining of degree 2 (see section 12.6 for details). 
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The RISC vs. CISC Controversy (12.8) 

• In spite of the apparent advantages of RISC, it is still an open question whether the RISC 
approach is demonstrably better.  

• Studies to compare RISC to CISC are hampered by several problems (as of the textbook 
writing):  

o There is no pair of RISC and CISC machines that are closely comparable  

o No definitive set of test programs exist.  

o It is difficult to sort out hardware effects from effects due to skill in compiler writing. 

• Most of the comparative analysis on RISC has been done on “toy” machines, rather than 
commercial products.  

• Most commercially available “RISC” machines possess a mixture of RISC and CISC 
characteristics.  

• The controversy has died down to a great extent  

o As chip densities and speeds increase, RISC systems have become more complex  

o To improve performance, CISC systems have increased their number of general-
purpose registers and increased emphasis on instruction pipeline design. 
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III. THE CENTRAL PROCESSING UNIT.  

8. ...  
9. ...  
10. ...  
11. ...  
12. …   
13. Instruction-Level Parallelism and Superscalar Processors. (5-May-01) 

 
 
Overview (13.1) 

• Superscalar refers to a machine that is designed to improve the performance of the execution 
of scalar instructions  

o This is as opposed to vector processors, which achieve performance gains through 
parallel computation of elements of homogenous structures (such as vectors and 
arrays)  

o The essence of the superscalar approach is the ability to execute instructions 
independently in different pipelines, and in an order different from the program order. 

o In general terms, there are multiple functional units, each of which is implemented as 
a pipeline, which support parallel execution of several instructions.  

• Superscalar vs. Superpipelined  

o Superpipeline falls behind the superscalar processor at the start of the program and at 
each branch target. 
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• Limitations  

o Superscalar approach depends on the ability to execute multiple instructions in 
parallel.  

o Instruction-level parallelism refers to the degree to which, on average, the instructions 
of a program can be executed in parallel. 

• Fundamental limitations to parallelism (to which we apply compiler-based optimization and 
hardware techniques)  

o True data dependency  
§ Also called flow dependency or write-read dependency  
§ Caused when one instruction needs data produced by a previous instruction  

o Procedural dependency  
§ Usually caused by branches, i.e. the instructions following a branch (taken or 

not taken) cannot be executed until the branch is executed  
§ Variable length instructions cause a procedural dependency because the 

instruction must be at least partially decoded (to determine its length) before 
the next instruction can be fetched. 

o Resource conflicts  
§ A competition of two or more instructions for the same resource oat the same 

time.  
§ Resources include memories, caches, buses, register-file ports, and 

functional units.  
§ Similar to data dependency, but can be  

§ overcome by duplication of resources  
§ minimized by pipelining the appropriate functional unit (when an 

operation takes a long time) 

o Output dependency  
§ Only occurs when instructions may be completed out of order  
§ Occurs when two instructions both change the same register or memory 

location, and a subsequent instruction references that data. The order of 
those two instructions must be preserved.  

o Antidependency  
§ Only occurs when instructions may be issued out of order  
§ Similar to a true data dependency, but reversed  
§ Instead of the first instruction producing a value that the second instruction 

uses, the second instruction destroys a value that the first instruction uses  

 


