
pyexcel
Release 0.7.3

C.W.

Apr 26, 2025

CONTENTS

1 Introduction 3

2 Support the project 5
2.1 Installation . 5
2.2 Advanced usage :fire: . 6
2.3 Plugin shopping guide . 8
2.4 Usage . 9
2.5 Design . 9
2.6 New tutorial . 17
2.7 Old tutorial . 47
2.8 Cook book . 80
2.9 Real world cases . 89
2.10 API documentation . 92
2.11 Developer’s guide . 177
2.12 Change log . 182

3 Indices and tables 197

Index 199

i

ii

pyexcel, Release 0.7.3

Author
C.W.

Source code
http://github.com/pyexcel/pyexcel.git

Issues
http://github.com/pyexcel/pyexcel/issues

License
New BSD License

Released
0.7.3

Generated
Apr 26, 2025

CONTENTS 1

http://github.com/pyexcel/pyexcel.git
http://github.com/pyexcel/pyexcel/issues

pyexcel, Release 0.7.3

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

pyexcel provides one unified API for reading, manipulating, and writing data in various Excel formats. It simplifies the
process of handling Excel files, making it an enjoyable task. Data in Excel files can be easily converted into arrays or
dictionaries with minimal code, and vice versa. This library focuses purely on data processing and does not address
features like fonts, colors, or charts.
The idea behind pyexcel originated from a common usability problem: when Excel-driven web applications are deliv-
ered to non-developer users (e.g., project assistants, human resources administrators), they often are not aware of the
differences between file formats such as CSV, XLS, and XLSX. Rather than training users on these formats, pyexcel
provides web developers with a unified interface to handle most Excel file types.

To add support for a specific Excel format in your application, simply install an additional pyexcel plugin—no code
changes required. This eliminates issues with different file formats. In the broader community, pyexcel and its associ-
ated libraries aim to be a simple, easy-to-install alternative to Pandas, where minimal data manipulation is needed.

3

pyexcel, Release 0.7.3

4 Chapter 1. Introduction

CHAPTER

TWO

SUPPORT THE PROJECT

If your company uses pyexcel and its components in a revenue-generating product, please consider supporting the
project on GitHub or Patreon. Your financial support will enable me to dedicate more time to coding, improving
documentation, and creating engaging content.

2.1 Installation
You can install pyexcel via pip:

$ pip install pyexcel

or clone it and install it:

$ git clone https://github.com/pyexcel/pyexcel.git
$ cd pyexcel
$ python setup.py install

Suppose you have the following data in a dictionary:

Name Age
Adam 28
Beatrice 29
Ceri 30
Dean 26

you can easily save it into an excel file using the following code:

>>> import pyexcel
>>> # make sure you had pyexcel-xls installed
>>> a_list_of_dictionaries = [
... {
... "Name": 'Adam',
... "Age": 28
... },
... {
... "Name": 'Beatrice',
... "Age": 29
... },
... {
... "Name": 'Ceri',

(continues on next page)

5

https://www.patreon.com/bePatron?u=5537627

pyexcel, Release 0.7.3

(continued from previous page)

... "Age": 30

... },

... {

... "Name": 'Dean',

... "Age": 26

... }

...]
>>> pyexcel.save_as(records=a_list_of_dictionaries, dest_file_name="your_file.xls")

And here’s how to obtain the records:

>>> import pyexcel as p
>>> records = p.iget_records(file_name="your_file.xls")
>>> for record in records:
... print("%s is aged at %d" % (record['Name'], record['Age']))
Adam is aged at 28
Beatrice is aged at 29
Ceri is aged at 30
Dean is aged at 26
>>> p.free_resources()

Custom data rendering:

>>> # pip install pyexcel-text==0.2.7.1
>>> import pyexcel as p
>>> ccs_insight2 = p.Sheet()
>>> ccs_insight2.name = "Worldwide Mobile Phone Shipments (Billions), 2017-2021"
>>> ccs_insight2.ndjson = """
... {"year": ["2017", "2018", "2019", "2020", "2021"]}
... {"smart phones": [1.53, 1.64, 1.74, 1.82, 1.90]}
... {"feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]}
... """.strip()
>>> ccs_insight2
pyexcel sheet:
+----------------+------+------+------+------+------+
| year | 2017 | 2018 | 2019 | 2020 | 2021 |
+----------------+------+------+------+------+------+
| smart phones | 1.53 | 1.64 | 1.74 | 1.82 | 1.9 |
+----------------+------+------+------+------+------+
| feature phones | 0.46 | 0.38 | 0.3 | 0.23 | 0.17 |
+----------------+------+------+------+------+------+

2.2 Advanced usage :fire:
If you are dealing with big data, please consider these usages:

>>> def increase_everyones_age(generator):
... for row in generator:
... row['Age'] += 1
... yield row
>>> def duplicate_each_record(generator):

(continues on next page)

6 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

... for row in generator:

... yield row

... yield row
>>> records = p.iget_records(file_name="your_file.xls")
>>> io=p.isave_as(records=duplicate_each_record(increase_everyones_age(records)),
... dest_file_type='csv', dest_lineterminator='\n')
>>> print(io.getvalue())
Age,Name
29,Adam
29,Adam
30,Beatrice
30,Beatrice
31,Ceri
31,Ceri
27,Dean
27,Dean

Two advantages of above method:

1. Add as many wrapping functions as you want.

2. Constant memory consumption

For individual excel file formats, please install them as you wish:

Table 1: A list of file formats supported by external plugins

Package name Supported file formats Dependencies
pyexcel-io csv, csvz1, tsv, tsvz2 csvz,tsvz readers depends on chardet
pyexcel-xls xls, xlsx(read only), xlsm(read only) xlrd, xlwt
pyexcel-xlsx xlsx openpyxl
pyexcel-ods3 ods pyexcel-ezodf, lxml
pyexcel-ods ods odfpy

Table 2: Dedicated file reader and writers

Package name Supported file formats Dependencies
pyexcel-xlsxw xlsx(write only) XlsxWriter
pyexcel-libxlsxw xlsx(write only) libxlsxwriter
pyexcel-xlsxr xlsx(read only) lxml
pyexcel-xlsbr xlsb(read only) pyxlsb
pyexcel-odsr read only for ods, fods lxml
pyexcel-odsw write only for ods loxun
pyexcel-htmlr html(read only) lxml,html5lib
pyexcel-pdfr pdf(read only) camelot

1 zipped csv file
2 zipped tsv file

2.2. Advanced usage :fire: 7

https://github.com/pyexcel/pyexcel-io
https://github.com/pyexcel/pyexcel-xls
https://github.com/python-excel/xlrd
https://github.com/python-excel/xlwt
https://github.com/pyexcel/pyexcel-xlsx
https://bitbucket.org/openpyxl/openpyxl
https://github.com/pyexcel/pyexcel-ods3
https://github.com/pyexcel/pyexcel-ezodf
https://github.com/pyexcel/pyexcel-ods
https://github.com/eea/odfpy
https://github.com/pyexcel/pyexcel-xlsxw
https://github.com/jmcnamara/XlsxWriter
https://github.com/pyexcel/pyexcel-libxlsxw
http://libxlsxwriter.github.io/getting_started.html
https://github.com/pyexcel/pyexcel-xlsxr
https://github.com/pyexcel/pyexcel-xlsbr
https://github.com/pyexcel/pyexcel-odsr
https://github.com/pyexcel/pyexcel-odsw
https://github.com/pyexcel/pyexcel-htmlr
https://github.com/pyexcel/pyexcel-pdfr

pyexcel, Release 0.7.3

2.3 Plugin shopping guide
Since 2020, all pyexcel-io plugins have dropped the support for python versions which are lower than 3.6. If you want
to use any of those Python versions, please use pyexcel-io and its plugins versions that are lower than 0.6.0.

Except csv files, xls, xlsx and ods files are a zip of a folder containing a lot of xml files

The dedicated readers for excel files can stream read

In order to manage the list of plugins installed, you need to use pip to add or remove a plugin. When you use virtualenv,
you can have different plugins per virtual environment. In the situation where you have multiple plugins that does the
same thing in your environment, you need to tell pyexcel which plugin to use per function call. For example, pyexcel-ods
and pyexcel-odsr, and you want to get_array to use pyexcel-odsr. You need to append get_array(. . . , library=’pyexcel-
odsr’).

Table 3: Other data renderers

Package
name

Supported file formats Depen-
dencies

Python versions

pyexcel-text write only:rst, mediawiki, html, latex, grid, pipe, orgtbl, plain
simple read only: ndjson r/w: json

tabulate 2.6, 2.7, 3.3, 3.4
3.5, 3.6, pypy

pyexcel-
handsontable

handsontable in html hand-
sontable

same as above

pyexcel-pygal svg chart pygal 2.7, 3.3, 3.4, 3.5
3.6, pypy

pyexcel-
sortable

sortable table in html csvtotable same as above

pyexcel-gantt gantt chart in html frappe-
gantt

except pypy, same
as above

For compatibility tables of pyexcel-io plugins, please click here

Table 4: Plugin compatibility table

pyexcel pyexcel-io pyexcel-text pyexcel-handsontable pyexcel-pygal pyexcel-gantt
0.6.5+ 0.6.2+ 0.2.6+ 0.0.1+ 0.0.1 0.0.1
0.5.15+ 0.5.19+ 0.2.6+ 0.0.1+ 0.0.1 0.0.1
0.5.14 0.5.18 0.2.6+ 0.0.1+ 0.0.1 0.0.1
0.5.10+ 0.5.11+ 0.2.6+ 0.0.1+ 0.0.1 0.0.1
0.5.9.1+ 0.5.9.1+ 0.2.6+ 0.0.1 0.0.1 0.0.1
0.5.4+ 0.5.1+ 0.2.6+ 0.0.1 0.0.1 0.0.1
0.5.0+ 0.4.0+ 0.2.6+ 0.0.1 0.0.1 0.0.1
0.4.0+ 0.3.0+ 0.2.5

8 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel-text
https://bitbucket.org/astanin/python-tabulate
https://github.com/pyexcel/pyexcel-handsontable
https://github.com/pyexcel/pyexcel-handsontable
https://cdnjs.com/libraries/handsontable
https://cdnjs.com/libraries/handsontable
https://github.com/pyexcel/pyexcel-chart
https://github.com/Kozea/pygal
https://github.com/pyexcel/pyexcel-sortable
https://github.com/pyexcel/pyexcel-sortable
https://github.com/vividvilla/csvtotable
https://github.com/pyexcel/pyexcel-gantt
https://github.com/frappe/gantt
https://github.com/frappe/gantt
http://pyexcel-io.readthedocs.io/en/latest/#id5

pyexcel, Release 0.7.3

Table 5: A list of supported file formats

file format definition
csv comma separated values
tsv tab separated values
csvz a zip file that contains one or many csv files
tsvz a zip file that contains one or many tsv files
xls a spreadsheet file format created by MS-Excel 97-2003
xlsx MS-Excel Extensions to the Office Open XML SpreadsheetML File Format.
xlsm an MS-Excel Macro-Enabled Workbook file
ods open document spreadsheet
fods flat open document spreadsheet
json java script object notation
html html table of the data structure
simple simple presentation
rst rStructured Text presentation of the data
mediawiki media wiki table

2.4 Usage
Suppose you want to process the following excel data :

Here are the example usages:

>>> import pyexcel as pe
>>> records = pe.iget_records(file_name="your_file.xls")
>>> for record in records:
... print("%s is aged at %d" % (record['Name'], record['Age']))
Adam is aged at 28
Beatrice is aged at 29
Ceri is aged at 30
Dean is aged at 26
>>> pe.free_resources()

2.5 Design

2.5.1 Introduction
This section introduces Excel data models, its representing data structures and provides an overview of formatting,
transformation, manipulation supported by pyexcel.

Data models and data structures

When dealing with excel files, pyexcel pay attention to three primary objects: cell, sheet and book.

A book contains one or more sheets and a sheet is consisted of a sheet name and a two dimensional array of cells.
Although a sheet can contain charts and a cell can have formula, styling properties, this library ignores them and only
pays attention to the data in the cell and its data type. So, in the context of this library, the definition of those three
concepts are:

2.4. Usage 9

pyexcel, Release 0.7.3

concept definition pyexcel data model
a cell is a data unit a Python data type
a sheet is a named two dimensional array of data units Sheet
a book is a dictionary of two dimensional array of data units. Book

Data source

A data source is a storage format of structured data. The most popular data source is an excel file. Libre Office/Microsoft
Excel can easily be used to generate an excel file of your desired format. Besides a physical file, this library recognizes
three additional types of source:

1. Excel files in computer memory. For example: when a file is uploaded to a Python server for information pro-
cessing. If it is relatively small, it can be stored in memory.

2. Database tables. For example: a client would like to have a snapshot of some database table in an excel file and
asks it to be sent to him.

3. Python structures. For example: a developer may have scraped a site and have stored data in Python array or
dictionary. He may want to save this information as a file.

Reading from - and writing to - a data source is modelled as parsers and renderers in pyexcel. Excel data sources and
database sources support read and write. Other data sources may only support read only, or write only methods.

Here is a list of data sources:

Data source Read and write properties
Array Read and write
Dictionary Same as above
Records Same as above
Excel files Same as above
Excel files in memory Same as above
Excel files on the web Read only
Django models Read and write
SQL models Read and write
Database querysets Read only
Textual sources Write only

Data format

This library and its plugins support most of the frequently used excel file formats.

10 Chapter 2. Support the project

pyexcel, Release 0.7.3

file format definition
csv comma separated values
tsv tab separated values
csvz a zip file that contains one or many csv files
tsvz a zip file that contains one or many tsv files
xls a spreadsheet file format created by MS-Excel 97-20031

xlsx MS-Excel Extensions to the Office Open XML SpreadsheetML File Format.2
xlsm an MS-Excel Macro-Enabled Workbook file
ods open document spreadsheet
json java script object notation
html html table of the data structure
simple simple presentation
rst rStructured Text presentation of the data
mediawiki media wiki table

See also A list of file formats supported by external plugins.

Data transformation

Often a developer would like to have excel data imported into a Python data structure. This library supports the con-
versions from previous three data source to the following list of data structures, and vice versa.

Table 6: A list of supported data structures

Pesudo name Python name Related model
two dimensional array a list of lists pyexcel.Sheet
a dictionary of key value pair a dictionary pyexcel.Sheet
a dictionary of one dimensional arrays a dictionary of lists pyexcel.Sheet
a list of dictionaries a list of dictionaries pyexcel.Sheet
a dictionary of two dimensional arrays a dictionary of lists of lists pyexcel.Book

Data manipulation

The main operation on a cell involves cell access, formatting and cleansing. The main operation on a sheet involves
group access to a row or a column; data filtering; and data transformation. The main operation in a book is obtain
access to individual sheets.

Data transcoding

For various reasons the data in one format needs to be transcoded into another. This library provides a transcoding
tunnel for data transcoding between supported file formats.

Data visualization

Via pyexcel.renderer.AbstractRenderer interface, data visualization is made possible. pyexcel-chart is the
interface plugin to formalize this effort. pyexcel-pygal is the first plugin to provide bar, pie, histogram charts and more.

1 quoted from whatis.com. Technical details can be found at MSDN XLS
2 xlsx is used by MS-Excel 2007, more information can be found at MSDN XLSX

2.5. Design 11

http://whatis.techtarget.com/fileformat/XLS-Worksheet-file-Microsoft-Excel
https://msdn.microsoft.com/en-us/library/office/gg615597(v=office.14).aspx
https://msdn.microsoft.com/en-us/library/dd922181(v=office.12).aspx

pyexcel, Release 0.7.3

Examples of supported data structure

Here is a list of examples:

>>> import pyexcel as p
>>> two_dimensional_list = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
...]
>>> p.get_sheet(array=two_dimensional_list)
pyexcel_sheet1:
+---+----+----+----+
| 1 | 2 | 3 | 4 |
+---+----+----+----+
| 5 | 6 | 7 | 8 |
+---+----+----+----+
| 9 | 10 | 11 | 12 |
+---+----+----+----+
>>> a_dictionary_of_key_value_pair = {
... "IE": 0.2,
... "Firefox": 0.3
... }
>>> p.get_sheet(adict=a_dictionary_of_key_value_pair)
pyexcel_sheet1:
+---------+-----+
| Firefox | IE |
+---------+-----+
| 0.3 | 0.2 |
+---------+-----+
>>> a_dictionary_of_one_dimensional_arrays = {
... "Column 1": [1, 2, 3, 4],
... "Column 2": [5, 6, 7, 8],
... "Column 3": [9, 10, 11, 12],
... }
>>> p.get_sheet(adict=a_dictionary_of_one_dimensional_arrays)
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 5 | 9 |
+----------+----------+----------+
| 2 | 6 | 10 |
+----------+----------+----------+
| 3 | 7 | 11 |
+----------+----------+----------+
| 4 | 8 | 12 |
+----------+----------+----------+
>>> a_list_of_dictionaries = [
... {
... "Name": 'Adam',
... "Age": 28
... },
... {

(continues on next page)

12 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

... "Name": 'Beatrice',

... "Age": 29

... },

... {

... "Name": 'Ceri',

... "Age": 30

... },

... {

... "Name": 'Dean',

... "Age": 26

... }

...]
>>> p.get_sheet(records=a_list_of_dictionaries)
pyexcel_sheet1:
+-----+----------+
| Age | Name |
+-----+----------+
| 28 | Adam |
+-----+----------+
| 29 | Beatrice |
+-----+----------+
| 30 | Ceri |
+-----+----------+
| 26 | Dean |
+-----+----------+
>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... }
>>> p.get_book(bookdict=a_dictionary_of_two_dimensional_arrays)
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+

(continues on next page)

2.5. Design 13

pyexcel, Release 0.7.3

(continued from previous page)

| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+

2.5.2 Signature functions
Import data into Python

This library provides one application programming interface to read data from one of the following data sources:

• physical file

• memory file

• SQLAlchemy table

• Django Model

• Python data structures: dictionary, records and array

and to transform them into one of the following data structures:

• two dimensional array

• a dictionary of one dimensional arrays

• a list of dictionaries

• a dictionary of two dimensional arrays

• a Sheet

• a Book

Four data access functions

Python data can be handled well using lists, dictionaries and various mixture of both. This library provides four module
level functions to help you obtain excel data in these data structures. Please refer to “A list of module level functions”,
the first three functions operates on any one sheet from an excel book and the fourth one returns all data in all sheets in
an excel book.

14 Chapter 2. Support the project

pyexcel, Release 0.7.3

Table 7: A list of module level functions

Functions Name Python name
get_array() two dimensional array a list of lists
get_dict() a dictionary of one dimensional arrays an ordered dictionary of lists
get_records() a list of dictionaries a list of dictionaries
get_book_dict() a dictionary of two dimensional arrays a dictionary of lists of lists

See also:

• get_an_array_from_an_excel_sheet

• How to get a dictionary from an excel sheet

• How to obtain records from an excel sheet

• How to obtain a dictionary from a multiple sheet book

The following two variants of the data access function use generator and should work well with big data files

Table 8: A list of variant functions

Functions Name Python name
iget_array()

a memory efficient two
dimensionalarray

a generator of a list of lists

iget_records() a memory efficient list list of dictio-
naries

a generator of a list of dictionaries

However, you will need to call free_resource() to make sure file handles are closed.

Two pyexcel functions

In cases where the excel data needs custom manipulations, a pyexcel user got a few choices: one is to use Sheet and
Book , the other is to look for more sophisticated ones:

• Pandas, for numerical analysis

• Do-it-yourself

Functions Returns
get_sheet() Sheet
get_book() Book

For all six functions, you can pass on the same command parameters while the return value is what the function says.

Export data from Python

This library provides one application programming interface to transform them into one of the data structures:

• two dimensional array

• a (ordered) dictionary of one dimensional arrays

• a list of dictionaries

2.5. Design 15

pyexcel, Release 0.7.3

• a dictionary of two dimensional arrays

• a Sheet

• a Book

and write to one of the following data sources:

• physical file

• memory file

• SQLAlchemy table

• Django Model

• Python data structures: dictionary, records and array

Here are the two functions:

Functions Description
save_as() Works well with single sheet file
isave_as() Works well with big data files
save_book_as()

Works with multiple sheet file
and big data files

isave_book_as()
Works with multiple sheet file

and big data files

If you would only use these two functions to do format transcoding, you may enjoy a speed boost using isave_as()
and isave_book_as(), because they use yield keyword and minimize memory footprint. However, you will need to
call free_resource() to make sure file handles are closed. And save_as() and save_book_as() reads all data
into memory and will make all rows the same width.

See also:

• How to save an python array as an excel file

• How to save a dictionary of two dimensional array as an excel file

• How to save an python array as a csv file with special delimiter

Data transportation/transcoding

This library is capable of transporting your data between any of the following data sources:

• physical file

• memory file

• SQLAlchemy table

• Django Model

• Python data structures: dictionary, records and array

See also:

• How to import an excel sheet to a database using SQLAlchemy

• How to open an xls file and save it as xlsx

16 Chapter 2. Support the project

pyexcel, Release 0.7.3

• How to open an xls file and save it as csv

2.5.3 Architecture
pyexcel uses loosely couple plugins to fullfil the promise to access various file formats. lml is the plugin management
library that provide the specialized support for the loose coupling.

What is loose coupling?

The components of pyexcel is designed as building blocks. For your project, you can cherry-pick the file format support
without affecting the core functionality of pyexcel. Each plugin will bring in additional dependences. For example, if
you choose pyexcel-xls, xlrd and xlwt will be brought in as 2nd level depndencies.

Looking at the following architectural diagram, pyexcel hosts plugin interfaces for data source, data renderer and
data parser. pyexcel-pygal, pyexcel-matplotlib, and pyexcel-handsontable extend pyexcel using data renderer interface.
pyexcel-io package takes away the responsibilities to interface with excel libraries, for example: xlrd, openpyxl, ezodf.

As in A list of file formats supported by external plugins, there are overlapping capabilities in reading and writing xlsx,
ods files. Because each third parties express different personalities although they may read and write data in the same
file format, you as the pyexcel is left to pick which suit your task best.

Dotted arrow means the package or module is loaded later.

2.6 New tutorial

2.6.1 One liners
This section shows you how to get data from your excel files and how to export data to excel files in one line

Read from the excel files

Get a list of dictionaries

Suppose you want to process History of Classical Music:

Let’s get a list of dictionary out from the xls file:

>>> records = p.get_records(file_name="your_file.xls")

And let’s check what do we have:

>>> for row in records:
... print(f"{row['Representative Composers']} are from {row['Name']} period ({row[
→˓'Period']})")
Machaut, Landini are from Medieval period (c.1150-c.1400)
Gibbons, Frescobaldi are from Renaissance period (c.1400-c.1600)
JS Bach, Vivaldi are from Baroque period (c.1600-c.1750)
Joseph Haydn, Wolfgan Amadeus Mozart are from Classical period (c.1750-c.1830)
Chopin, Mendelssohn, Schumann, Liszt are from Early Romantic period (c.1830-c.1860)
Wagner,Verdi are from Late Romantic period (c.1860-c.1920)
Sergei Rachmaninoff,Calude Debussy are from Modernist period (20th century)

2.6. New tutorial 17

https://www.naxos.com/education/brief_history.asp

pyexcel, Release 0.7.3

Get two dimensional array

Instead, what if you have to use pyexcel.get_array to do the same:

>>> for row in p.get_array(file_name="your_file.xls", start_row=1):
... print(f"{row[2]} are from {row[0]} period ({row[1]})")
Machaut, Landini are from Medieval period (c.1150-c.1400)
Gibbons, Frescobaldi are from Renaissance period (c.1400-c.1600)
JS Bach, Vivaldi are from Baroque period (c.1600-c.1750)
Joseph Haydn, Wolfgan Amadeus Mozart are from Classical period (c.1750-c.1830)
Chopin, Mendelssohn, Schumann, Liszt are from Early Romantic period (c.1830-c.1860)
Wagner,Verdi are from Late Romantic period (c.1860-c.1920)
Sergei Rachmaninoff,Calude Debussy are from Modernist period (20th century)

where start_row skips the header row.

Get a dictionary

You can get a dictionary too:

>>> my_dict = p.get_dict(file_name="your_file.xls", name_columns_by_row=0)

And let’s have a look inside:

>>> from pyexcel._compact import OrderedDict
>>> isinstance(my_dict, OrderedDict)
True
>>> for key, values in my_dict.items():
... print(key + " : " + ','.join([str(item) for item in values]))
Name : Medieval,Renaissance,Baroque,Classical,Early Romantic,Late Romantic,Modernist
Period : c.1150-c.1400,c.1400-c.1600,c.1600-c.1750,c.1750-c.1830,c.1830-c.1860,c.1860-c.
→˓1920,20th century
Representative Composers : Machaut, Landini,Gibbons, Frescobaldi,JS Bach, Vivaldi,Joseph␣
→˓Haydn, Wolfgan Amadeus Mozart,Chopin, Mendelssohn, Schumann, Liszt,Wagner,Verdi,Sergei␣
→˓Rachmaninoff,Calude Debussy

Please note that my_dict is an OrderedDict.

Get a dictionary of two dimensional array

Suppose you have a multiple sheet book as the following:

Here is the code to obtain those sheets as a single dictionary:

>>> book_dict = p.get_book_dict(file_name="book.xls")

And check:

>>> isinstance(book_dict, OrderedDict)
True
>>> import json
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Most Expensive Violins": [["Name", "Estimated Value", "Location"], ["Messiah␣
→˓Stradivarious", "$ 20,000,000", "Ashmolean Museum in Oxford, England"], ["Vieuxtemps␣

(continues on next page)

18 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

→˓Guarneri", "$ 16,000,000", "On loan to Anne Akiko Meyers"], ["Lady Blunt", "$ 15,900,
→˓000", "Anonymous bidder"]]}
{"Noteable Violin Makers": [["Maker", "Period", "Country"], ["Antonio Stradivari", "1644-
→˓1737", "Cremona, Italy"], ["Giovanni Paolo Maggini", "1580-1630", "Botticino, Italy"],␣
→˓["Amati Family", "1500-1740", "Cremona, Italy"], ["Guarneri Family", "1626-1744",
→˓"Cremona, Italy"], ["Rugeri Family", "1628-1719", "Cremona, Italy"], ["Carlo Bergonzi",
→˓ "1683-1747", "Cremona, Italy"], ["Jacob Stainer", "1617-1683", "Austria"]]}
{"Top Violinist": [["Name", "Period", "Nationality"], ["Antonio Vivaldi", "1678-1741",
→˓"Italian"], ["Niccolo Paganini", "1782-1840", "Italian"], ["Pablo de Sarasate", "1852-
→˓1904", "Spainish"], ["Eugene Ysaye", "1858-1931", "Belgian"], ["Fritz Kreisler", "1875-
→˓1962", "Astria-American"], ["Jascha Heifetz", "1901-1987", "Russian-American"], [
→˓"David Oistrakh", "1908-1974", "Russian"], ["Yehundi Menuhin", "1916-1999", "American
→˓"], ["Itzhak Perlman", "1945-", "Israeli-American"], ["Hilary Hahn", "1979-", "American
→˓"]]}

Write data

Export an array

Suppose you have the following array:

>>> data = [['G', 'D', 'A', 'E'], ['Thomastik-Infield Domaints', 'Thomastik-Infield␣
→˓Domaints', 'Thomastik-Infield Domaints', 'Pirastro'], ['Silver wound', '', 'Aluminum␣
→˓wound', 'Gold Label Steel']]

And here is the code to save it as an excel file :

>>> p.save_as(array=data, dest_file_name="example.xls")

Let’s verify it:

>>> p.get_sheet(file_name="example.xls")
pyexcel_sheet1:
+----------------------------+----------------------------+----------------------------+-
→˓-----------------+
| G | D | A |␣
→˓E |
+----------------------------+----------------------------+----------------------------+-
→˓-----------------+
| Thomastik-Infield Domaints | Thomastik-Infield Domaints | Thomastik-Infield Domaints |␣
→˓Pirastro |
+----------------------------+----------------------------+----------------------------+-
→˓-----------------+
| Silver wound | | Aluminum wound |␣
→˓Gold Label Steel |
+----------------------------+----------------------------+----------------------------+-
→˓-----------------+

And here is the code to save it as a csv file :

>>> p.save_as(array=data,
... dest_file_name="example.csv",
... dest_delimiter=':')

2.6. New tutorial 19

pyexcel, Release 0.7.3

Let’s verify it:

>>> with open("example.csv") as f:
... for line in f.readlines():
... print(line.rstrip())
...
G:D:A:E
Thomastik-Infield Domaints:Thomastik-Infield Domaints:Thomastik-Infield Domaints:Pirastro
Silver wound::Aluminum wound:Gold Label Steel

Export a list of dictionaries

>>> records = [
... {"year": 1903, "country": "Germany", "speed": "206.7km/h"},
... {"year": 1964, "country": "Japan", "speed": "210km/h"},
... {"year": 2008, "country": "China", "speed": "350km/h"}
...]
>>> p.save_as(records=records, dest_file_name='high_speed_rail.xls')

Export a dictionary of single key value pair

>>> henley_on_thames_facts = {
... "area": "5.58 square meters",
... "population": "11,619",
... "civial parish": "Henley-on-Thames",
... "latitude": "51.536",
... "longitude": "-0.898"
... }
>>> p.save_as(adict=henley_on_thames_facts, dest_file_name='henley.xlsx')

Export a dictionary of single dimensonal array

>>> ccs_insights = {
... "year": ["2017", "2018", "2019", "2020", "2021"],
... "smart phones": [1.53, 1.64, 1.74, 1.82, 1.90],
... "feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]
... }
>>> p.save_as(adict=ccs_insights, dest_file_name='ccs.csv')

Export a dictionary of two dimensional array as a book

Suppose you want to save the below dictionary to an excel file :

>>> a_dictionary_of_two_dimensional_arrays = {
... 'Top 3 Aircraft Manufacturers':
... [
... ['Name', 'Revenue'],
... ['Lockheed Martin', '65.4 billion USD'],
... ['Airbus', '78.9 billion USD'],
... ['Boeing', '58.16 billion USD']
...],

(continues on next page)

20 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

... 'Top 3 Airlines':

... [

... ['Name', 'Country', 'Revenue'],

... ['Delta Air Lines', 'US', 61.6],

... ['American Airlines Holdings', 'US', 57.1],

... ['American Airlines Group', 'US', 54.2]

...],

... 'Biggest 3 Airoplanes':

... [

... ['Model', 'Passenger limt'],

... ['Airbus A380-800', 853],

... ['Boeing 747-400', 660],

... ['Boeing 747-8', 605]

...]

... }

Here is the code:

>>> p.save_book_as(
... bookdict=a_dictionary_of_two_dimensional_arrays,
... dest_file_name="book.xls"
...)

If you want to preserve the order of sheets in your dictionary, you have to pass on an ordered dictionary to the function
itself. For example:

>>> data = OrderedDict()
>>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Top 3 Airlines']})
>>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Top 3 Aircraft␣
→˓Manufacturers']})
>>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Biggest 3 Airoplanes
→˓']})
>>> p.save_book_as(bookdict=data, dest_file_name="book.xls")

Let’s verify its order:

>>> book_dict = p.get_book_dict(file_name="book.xls")
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Sheet 2": [["Name", "Country", "Revenue"], ["Delta Air Lines", "US", 61.6], ["American␣
→˓Airlines Holdings", "US", 57.1], ["American Airlines Group", "US", 54.2]]}
{"Sheet 1": [["Name", "Revenue"], ["Lockheed Martin", "65.4 billion USD"], ["Airbus",
→˓"78.9 billion USD"], ["Boeing", "58.16 billion USD"]]}
{"Sheet 3": [["Model", "Passenger limt"], ["Airbus A380-800", 853], ["Boeing 747-400",␣
→˓660], ["Boeing 747-8", 605]]}

Please notice that “Sheet 2” is the first item in the book_dict, meaning the order of sheets are preserved.

Transcoding

ò Note

2.6. New tutorial 21

pyexcel, Release 0.7.3

Please note that pyexcel-cli can perform file transcoding at command line. No need to open your editor, save the
code, then python run.

The following code does a simple file format transcoding from xls to csv:

>>> p.save_as(file_name="trump_tariffs.xls", dest_file_name="trump_tariffs.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="trump_tariffs.csv")
>>> sheet
trump_tariffs.csv:
+----------------+-------------------+----------------------------+
| Country | New US tariffs, % | Tariffs charged to the USA |
+----------------+-------------------+----------------------------+
| China | 34 | 67 |
+----------------+-------------------+----------------------------+
| EU | 20 | 39 |
+----------------+-------------------+----------------------------+
| United Kingdom | 10 | 10 |
+----------------+-------------------+----------------------------+

ò Note

Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls file
will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding
job.

Let use previous example and save it as xlsx instead

>>> p.save_as(file_name="trump_tariffs.xls",
... dest_file_name="trump_tariffs.xlsx") # change the file extension

Again let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="trump_tariffs.xlsx")
>>> sheet
pyexcel_sheet1:
+----------------+-------------------+----------------------------+
| Country | New US tariffs, % | Tariffs charged to the USA |
+----------------+-------------------+----------------------------+
| China | 34 | 67 |
+----------------+-------------------+----------------------------+
| EU | 20 | 39 |
+----------------+-------------------+----------------------------+
| United Kingdom | 10 | 10 |
+----------------+-------------------+----------------------------+

22 Chapter 2. Support the project

pyexcel, Release 0.7.3

Excel book merge and split operation in one line

Merge all excel files in directory into a book where each file become a sheet

The following code will merge every excel files into one file, say “output.xls”:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book(glob.glob("your_csv_directory*.csv"), "output.xls")

You can mix and match with other excel formats: xls, xlsm and ods. For example, if you are sure you have only xls,
xlsm, xlsx, ods and csv files in your_excel_file_directory, you can do the following:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book(glob.glob("your_excel_file_directory*.*"), "output.xls")

Split a book into single sheet files

Suppose you have many sheets in a work book and you would like to separate each into a single sheet excel file. You
can easily do this:

>>> from pyexcel.cookbook import split_a_book
>>> split_a_book("megabook.xls", "output.xls")
>>> import glob
>>> outputfiles = glob.glob("*_output.xls")
>>> for file in sorted(outputfiles):
... print(file)
...
Sheet 1_output.xls
Sheet 2_output.xls
Sheet 3_output.xls

for the output file, you can specify any of the supported formats

Extract just one sheet from a book

Suppose you just want to extract one sheet from many sheets that exists in a work book and you would like to separate
it into a single sheet excel file. You can easily do this:

>>> from pyexcel.cookbook import extract_a_sheet_from_a_book
>>> extract_a_sheet_from_a_book("megabook.xls", "Sheet 1", "output.xls")
>>> if os.path.exists("Sheet 1_output.xls"):
... print("Sheet 1_output.xls exists")
...
Sheet 1_output.xls exists

for the output file, you can specify any of the supported formats

2.6. New tutorial 23

pyexcel, Release 0.7.3

2.6.2 Stream APIs for big file : A set of two liners
When you are dealing with BIG excel files, you will want pyexcel to use constant memory.

This section shows you how to get data from your BIG excel files and how to export data to excel files in two lines at
most, without eating all your computer memory.

Two liners for get data from big excel files

Get a list of dictionaries

Suppose you want to process the following coffee data:

Let’s get a list of dictionary out from the xls file:

>>> records = p.iget_records(file_name="your_file.xls")

And let’s check what do we have:

>>> for r in records:
... print(f"{r['Serving Size']} of {r['Coffees']} has {r['Caffeine (mg)']} mg")
venti(20 oz) of Starbucks Coffee Blonde Roast has 475 mg
large(20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg
grande(16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg
regular(16 oz.) of Panera Coffee Light Roast has 300 mg

Please do not forget the second line to close the opened file handle:

>>> p.free_resources()

Get two dimensional array

Instead, what if you have to use pyexcel.get_array to do the same:

>>> for row in p.iget_array(file_name="your_file.xls", start_row=1):
... print(f"{row[1]} of {row[0]} has {row[2]} mg")
venti(20 oz) of Starbucks Coffee Blonde Roast has 475 mg
large(20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg
grande(16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg
regular(16 oz.) of Panera Coffee Light Roast has 300 mg

Again, do not forget the second line:

>>> p.free_resources()

where start_row skips the header row.

Data export in one liners

Export an array

Suppose you have the following array:

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file :

24 Chapter 2. Support the project

pyexcel, Release 0.7.3

>>> p.isave_as(array=data, dest_file_name="example.xls")

But the following line is not required because the data source are not file sources:

>>> # p.free_resources()

Let’s verify it:

>>> p.get_sheet(file_name="example.xls")
pyexcel_sheet1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

And here is the code to save it as a csv file :

>>> p.isave_as(array=data,
... dest_file_name="example.csv",
... dest_delimiter=':')

Let’s verify it:

>>> with open("example.csv") as f:
... for line in f.readlines():
... print(line.rstrip())
...
1:2:3
4:5:6
7:8:9

Export a list of dictionaries

>>> records = [
... {"year": 1903, "country": "Germany", "speed": "206.7km/h"},
... {"year": 1964, "country": "Japan", "speed": "210km/h"},
... {"year": 2008, "country": "China", "speed": "350km/h"}
... {"year": 2025, "country": "China", "speed": "400km/h"}
...]
>>> p.isave_as(records=records, dest_file_name='high_speed_rail.xls')

Export a dictionary of single key value pair

>>> henley_on_thames_facts = {
... "area": "5.58 square meters",
... "population": "11,619",
... "civial parish": "Henley-on-Thames",
... "latitude": "51.536",
... "longitude": "-0.898"

(continues on next page)

2.6. New tutorial 25

pyexcel, Release 0.7.3

(continued from previous page)

... }
>>> p.isave_as(adict=henley_on_thames_facts, dest_file_name='henley.xlsx')

Export a dictionary of single dimensonal array

>>> ccs_insights = {
... "year": ["2017", "2018", "2019", "2020", "2021"],
... "smart phones": [1.53, 1.64, 1.74, 1.82, 1.90],
... "feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]
... }
>>> p.isave_as(adict=ccs_insights, dest_file_name='ccs.csv')
>>> p.free_resources()

Export a dictionary of two dimensional array as a book

Suppose you want to save the below dictionary to an excel file :

>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... }

Here is the code:

>>> p.isave_book_as(
... bookdict=a_dictionary_of_two_dimensional_arrays,
... dest_file_name="book.xls"
...)

If you want to preserve the order of sheets in your dictionary, you have to pass on an ordered dictionary to the function
itself. For example:

>>> from pyexcel._compact import OrderedDict
>>> data = OrderedDict()
>>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']})

(continues on next page)

26 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

>>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']})
>>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Sheet 3']})
>>> p.isave_book_as(bookdict=data, dest_file_name="book.xls")
>>> p.free_resources()

Let’s verify its order:

>>> import json
>>> book_dict = p.get_book_dict(file_name="book.xls")
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

Please notice that “Sheet 2” is the first item in the book_dict, meaning the order of sheets are preserved.

File format transcoding on one line

ò Note

Please note that the following file transcoding could be with zero line. Please install pyexcel-cli and you will do the
transcode in one command. No need to open your editor, save the problem, then python run.

The following code does a simple file format transcoding from xls to csv:

>>> import pyexcel
>>> p.save_as(file_name="birth.xls", dest_file_name="birth.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="birth.csv")
>>> sheet
birth.csv:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

ò Note

Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls file
will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding
job.

Let use previous example and save it as xlsx instead

2.6. New tutorial 27

pyexcel, Release 0.7.3

>>> import pyexcel
>>> p.isave_as(file_name="birth.xls",
... dest_file_name="birth.xlsx") # change the file extension

Again let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="birth.xlsx")
>>> sheet
pyexcel_sheet1:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

2.6.3 For web developer
The following libraries are written to facilitate the daily import and export of excel data.

framework plugin/middleware/extension
Flask Flask-Excel
Django django-excel
Pyramid pyramid-excel

And you may make your own by using pyexcel-webio

Read any supported excel and respond its content in json

You can find a real world example in examples/memoryfile/ directory: pyexcel_server.py. Here is the example snippet

1 def upload():
2 if request.method == 'POST' and 'excel' in request.files:
3 # handle file upload
4 filename = request.files['excel'].filename
5 extension = filename.split(".")[-1]
6 # Obtain the file extension and content
7 # pass a tuple instead of a file name
8 content = request.files['excel'].read()
9 if sys.version_info[0] > 2:

10 # in order to support python 3
11 # have to decode bytes to str
12 content = content.decode('utf-8')
13 sheet = pe.get_sheet(file_type=extension, file_content=content)
14 # then use it as usual
15 sheet.name_columns_by_row(0)
16 # respond with a json
17 return jsonify({"result": sheet.dict})
18 return render_template('upload.html')

request.files[‘excel’] in line 4 holds the file object. line 5 finds out the file extension. line 13 obtains a sheet instance.
line 15 uses the first row as data header. line 17 sends the json representation of the excel file back to client browser.

28 Chapter 2. Support the project

https://github.com/pyexcel-webwares/Flask-Excel
https://github.com/pyexcel-webwares/django-excel
https://github.com/pyexcel-webwares/pyramid-excel
https://github.com/pyexcel-webwares/pyexcel-webio

pyexcel, Release 0.7.3

Write to memory and respond to download

1 data = [
2 [...],
3 ...
4]
5

6 @app.route('/download')
7 def download():
8 sheet = pe.Sheet(data)
9 output = make_response(sheet.csv)

10 output.headers["Content-Disposition"] = "attachment; filename=export.csv"
11 output.headers["Content-type"] = "text/csv"
12 return output

make_response is a Flask utility to make a memory content as http response.

ò Note

You can find the corresponding source code at examples/memoryfile

2.6.4 Pyexcel data renderers
There exist a few data renderers for pyexcel data. This chapter will walk you through them.

View pyexcel data in ndjson and other formats

With pyexcel-text, you can get pyexcel data in newline delimited json, normal json and other formats.

View the pyexcel data in a browser

You can use pyexcel-handsontable to render your data.

Include excel data in your python documentation

sphinxcontrib-excel help you present your excel data in various formats inside your sphinx documentation.

Draw charts from your excel data

pyexcel-pygal helps you with all charting options and give you charts in svg format.

pyexcel-echarts draws 2D, 3D, geo charts from pyexcel data and has awesome animations too, but it is under develop-
ment.

pyexcel-matplotlib helps you with scientific charts and is under development.

Gantt chart visualization for your excel data

pyexcel-gantt is a specialist renderer for gantt chart.

2.6.5 Sheet
The sheet api here is much less powerful than pandas DataFrame when the array is of significant size. To be honesty,
pandas DataFrame is much more powerful and provide rich data manipulation apis. When would you consider the
sheet api here? if your data manipulation steps are basic and your data volume is not high, you can use them.

2.6. New tutorial 29

https://github.com/chfw/pyexcel/tree/master/examples/memoryfile
https://github.com/pyexcel-renderers/pyexcel-text
https://github.com/pyexcel-renderers/pyexcel-handsontable
https://github.com/pyexcel-renderers/sphinxcontrib-excel
https://github.com/pyexcel-renderers/pyexcel-pygal
https://github.com/pyexcel-renderers/pyexcel-echarts
https://github.com/pyexcel-renderers/pyexcel-matplotlib
https://github.com/pyexcel-renderers/pyexcel-gantt

pyexcel, Release 0.7.3

Random access

To randomly access a cell of Sheet instance, two syntax are available:

sheet[row, column]

or:

sheet['A1']

The former syntax is handy when you know the row and column numbers. The latter syntax is introduced to help you
convert the excel column header such as “AX” to integer numbers.

Suppose you have the following data, you can get value 5 by reader[2, 2].

Here is the example code showing how you can randomly access a cell:

>>> sheet = pyexcel.get_sheet(file_name="example.xls")
>>> sheet.content
+---------+---+---+---+
| Example | X | Y | Z |
+---------+---+---+---+
| a | 1 | 2 | 3 |
+---------+---+---+---+
| b | 4 | 5 | 6 |
+---------+---+---+---+
| c | 7 | 8 | 9 |
+---------+---+---+---+
>>> print(sheet[2, 2])
5
>>> print(sheet["C3"])
5
>>> sheet[3, 3] = 10
>>> print(sheet[3, 3])
10

ò Note

In order to set a value to a cell, please use sheet[row_index, column_index] = new_value

or sheet[‘A1’] = new_value

Random access to rows and columns
Continue with previous excel file, you can access row and column separately:

>>> sheet.row[1]
['a', 1, 2, 3]
>>> sheet.column[2]
['Y', 2, 5, 8]

Use custom names instead of index Alternatively, it is possible to use the first row to refer to each columns:

>>> sheet.name_columns_by_row(0)
>>> print(sheet[1, "Y"])

(continues on next page)

30 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

5
>>> sheet[1, "Y"] = 100
>>> print(sheet[1, "Y"])
100

You have noticed the row index has been changed. It is because first row is taken as the column names, hence all rows
after the first row are shifted. Now accessing the columns are changed too:

>>> sheet.column['Y']
[2, 100, 8]

Hence access the same cell, this statement also works:

>>> sheet.column['Y'][1]
100

Further more, it is possible to use first column to refer to each rows:

>>> sheet.name_rows_by_column(0)

To access the same cell, we can use this line:

>>> sheet.row["b"][1]
100

For the same reason, the row index has been reduced by 1. Since we have named columns and rows, it is possible to
access the same cell like this:

>>> print(sheet["b", "Y"])
100
>>> sheet["b", "Y"] = 200
>>> print(sheet["b", "Y"])
200

Play with data
Suppose you have the following data in any of the supported excel formats again:

>>> sheet = pyexcel.get_sheet(file_name="example_series.xls",
... name_columns_by_row=0)

You can get headers:

>>> print(list(sheet.colnames))
['Column 1', 'Column 2', 'Column 3']

You can use a utility function to get all in a dictionary:

>>> sheet.to_dict()
OrderedDict([('Column 1', [1, 4, 7]), ('Column 2', [2, 5, 8]), ('Column 3', [3, 6, 9])])

Maybe you want to get only the data without the column headers. You can call rows() instead:

>>> list(sheet.rows())
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

2.6. New tutorial 31

pyexcel, Release 0.7.3

attributes
Attributes:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.get_sheet(file_type="csv", file_content=content)
>>> sheet.tsv
'1\t2\t3\r\n3\t4\t5\r\n'
>>> print(sheet.simple)
csv:
- - -
1 2 3
3 4 5
- - -

What’s more, you could as well set value to an attribute, for example::

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.Sheet()
>>> sheet.csv = content
>>> sheet.array
[[1, 2, 3], [3, 4, 5]]

You can get the direct access to underneath stream object. In some situation, it is desired:

>>> stream = sheet.stream.tsv

The returned stream object has tsv formatted content for reading.

What you could further do is to set a memory stream of any supported file format to a sheet. For example:

>>> another_sheet = pyexcel.Sheet()
>>> another_sheet.xls = sheet.xls
>>> another_sheet.content
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 3 | 4 | 5 |
+---+---+---+

Yet, it is possible assign a absolute url to an online excel file to an instance of pyexcel.Sheet.

custom attributes
You can pass on source specific parameters to getter and setter functions.

>>> content = "1-2-3\n3-4-5"
>>> sheet = pyexcel.Sheet()
>>> sheet.set_csv(content, delimiter="-")
>>> sheet.csv
'1,2,3\r\n3,4,5\r\n'
>>> sheet.get_csv(delimiter="|")
'1|2|3\r\n3|4|5\r\n'

32 Chapter 2. Support the project

pyexcel, Release 0.7.3

Data manipulation

The data in a sheet is represented by Sheet which maintains the data as a list of lists. You can regard Sheet as a two
dimensional array with additional iterators. Random access to individual column and row is exposed by Column and
Row

Column manipulation

Suppose have one data file as the following:

>>> sheet = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 4 | 7 |
+----------+----------+----------+
| 2 | 5 | 8 |
+----------+----------+----------+
| 3 | 6 | 9 |
+----------+----------+----------+

And you want to update Column 2 with these data: [11, 12, 13]

>>> sheet.column["Column 2"] = [11, 12, 13]
>>> sheet.column[1]
[11, 12, 13]
>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 11 | 7 |
+----------+----------+----------+
| 2 | 12 | 8 |
+----------+----------+----------+
| 3 | 13 | 9 |
+----------+----------+----------+

Remove one column of a data file

If you want to remove Column 2, you can just call:

>>> del sheet.column["Column 2"]
>>> sheet.column["Column 3"]
[7, 8, 9]

The sheet content will become:

>>> sheet
pyexcel sheet:
+----------+----------+
| Column 1 | Column 3 |

(continues on next page)

2.6. New tutorial 33

pyexcel, Release 0.7.3

(continued from previous page)

+==========+==========+
| 1 | 7 |
+----------+----------+
| 2 | 8 |
+----------+----------+
| 3 | 9 |
+----------+----------+

Append more columns to a data file

Continue from previous example. Suppose you want add two more columns to the data file

Column 4 Column 5
10 13
11 14
12 15

Here is the example code to append two extra columns:

>>> extra_data = [
... ["Column 4", "Column 5"],
... [10, 13],
... [11, 14],
... [12, 15]
...]
>>> sheet2 = pyexcel.Sheet(extra_data)
>>> sheet3 = sheet.column + sheet2
>>> sheet3.column["Column 4"]
[10, 11, 12]
>>> sheet3.column["Column 5"]
[13, 14, 15]

Please note above column plus statement will not update original sheet instance, as pyexcel user demanded:

>>> sheet
pyexcel sheet:
+----------+----------+
| Column 1 | Column 3 |
+==========+==========+
| 1 | 7 |
+----------+----------+
| 2 | 8 |
+----------+----------+
| 3 | 9 |
+----------+----------+

So, to change orginal sheet instance, you can elect to do:

>>> sheet.column += sheet2

Here is what you will get:

34 Chapter 2. Support the project

pyexcel, Release 0.7.3

>>> sheet
pyexcel sheet:
+----------+----------+----------+----------+
| Column 1 | Column 3 | Column 4 | Column 5 |
+==========+==========+==========+==========+
| 1 | 7 | 10 | 13 |
+----------+----------+----------+----------+
| 2 | 8 | 11 | 14 |
+----------+----------+----------+----------+
| 3 | 9 | 12 | 15 |
+----------+----------+----------+----------+

Cherry pick some columns to be removed

Suppose you have the following data:

>>> data = [
... ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'],
... [1,2,3,4,5,6,7,9],
...]
>>> sheet = pyexcel.Sheet(data, name_columns_by_row=0)
>>> sheet
pyexcel sheet:
+---+---+---+---+---+---+---+---+
| a | b | c | d | e | f | g | h |
+===+===+===+===+===+===+===+===+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
+---+---+---+---+---+---+---+---+

And you want to remove columns named as: ‘a’, ‘c, ‘e’, ‘h’. This is how you do it:

>>> del sheet.column['a', 'c', 'e', 'h']
>>> sheet
pyexcel sheet:
+---+---+---+---+
| b | d | f | g |
+===+===+===+===+
| 2 | 4 | 6 | 7 |
+---+---+---+---+

What if the headers are in a different row

Suppose you have the following data:

>>> sheet
pyexcel sheet:
+----------+----------+----------+
| 1 | 2 | 3 |
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+

2.6. New tutorial 35

pyexcel, Release 0.7.3

The way to name your columns is to use index 1:

>>> sheet.name_columns_by_row(1)

Here is what you get:

>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 2 | 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+

Row manipulation

Suppose you have the following data:

>>> sheet
pyexcel sheet:
+---+---+---+-------+
| a | b | c | Row 1 |
+---+---+---+-------+
| e | f | g | Row 2 |
+---+---+---+-------+
| 1 | 2 | 3 | Row 3 |
+---+---+---+-------+

You can name your rows by column index at 3:

>>> sheet.name_rows_by_column(3)
>>> sheet
pyexcel sheet:
+-------+---+---+---+
| Row 1 | a | b | c |
+-------+---+---+---+
| Row 2 | e | f | g |
+-------+---+---+---+
| Row 3 | 1 | 2 | 3 |
+-------+---+---+---+

Then you can access rows by its name:

>>> sheet.row["Row 1"]
['a', 'b', 'c']

Formatting

Previous section has assumed the data is in the format that you want. In reality, you have to manipulate the data types
a bit to suit your needs. Hence, formatters comes into the scene. use format() to apply formatter immediately.

36 Chapter 2. Support the project

pyexcel, Release 0.7.3

ò Note

int, float and datetime values are automatically detected in csv files since pyexcel version 0.2.2

Convert a column of numbers to strings

Suppose you have the following data:

>>> import pyexcel
>>> data = [
... ["userid","name"],
... [10120,"Adam"],
... [10121,"Bella"],
... [10122,"Cedar"]
...]
>>> sheet = pyexcel.Sheet(data)
>>> sheet.name_columns_by_row(0)
>>> sheet.column["userid"]
[10120, 10121, 10122]

As you can see, userid column is of int type. Next, let’s convert the column to string format:

>>> sheet.column.format("userid", str)
>>> sheet.column["userid"]
['10120', '10121', '10122']

Cleanse the cells in a spread sheet

Sometimes, the data in a spreadsheet may have unwanted strings in all or some cells. Let’s take an example. Suppose
we have a spread sheet that contains all strings but it as random spaces before and after the text values. Some field had
weird characters, such as “ ”:

>>> data = [
... [" Version", " Comments", " Author "],
... [" v0.0.1 ", " Release versions"," Eda"],
... [" v0.0.2 ", "Useful updates ", " Freud"]
...]
>>> sheet = pyexcel.Sheet(data)
>>> sheet.content
+-----------------+------------------------------+----------------------+
| Version | Comments | Author |
+-----------------+------------------------------+----------------------+
| v0.0.1 | Release versions | Eda |
+-----------------+------------------------------+----------------------+
| v0.0.2 | Useful updates | Freud |
+-----------------+------------------------------+----------------------+

Now try to create a custom cleanse function:

.. code-block:: python

2.6. New tutorial 37

pyexcel, Release 0.7.3

>>> def cleanse_func(v):
... v = v.replace(" ", "")
... v = v.rstrip().strip()
... return v
...

Then let’s create a SheetFormatter and apply it:

.. code-block:: python

>>> sheet.map(cleanse_func)

So in the end, you get this:

>>> sheet.content
+---------+------------------+--------+
| Version | Comments | Author |
+---------+------------------+--------+
| v0.0.1 | Release versions | Eda |
+---------+------------------+--------+
| v0.0.2 | Useful updates | Freud |
+---------+------------------+--------+

Data filtering

use filter() function to apply a filter immediately. The content is modified.

Suppose you have the following data in any of the supported excel formats:

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

>>> import pyexcel

>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)
>>> sheet.content
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 2 | 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+
| 7 | 8 | 9 |
+----------+----------+----------+

38 Chapter 2. Support the project

pyexcel, Release 0.7.3

Filter out some data

You may want to filter odd rows and print them in an array of dictionaries:

>>> sheet.filter(row_indices=[0, 2])
>>> sheet.content
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 4 | 5 | 6 |
+----------+----------+----------+

Let’s try to further filter out even columns:

>>> sheet.filter(column_indices=[1])
>>> sheet.content
+----------+----------+
| Column 1 | Column 3 |
+==========+==========+
| 4 | 6 |
+----------+----------+

Save the data

Let’s save the previous filtered data:

>>> sheet.save_as("example_series_filter.xls")

When you open example_series_filter.xls, you will find these data

Column 1 Column 3
2 8

How to filter out empty rows in my sheet?

Suppose you have the following data in a sheet and you want to remove those rows with blanks:

>>> import pyexcel as pe
>>> sheet = pe.Sheet([[1,2,3],['','',''],['','',''],[1,2,3]])

You can use pyexcel.filters.RowValueFilter, which examines each row, return True if the row should be filtered
out. So, let’s define a filter function:

>>> def filter_row(row_index, row):
... result = [element for element in row if element != '']
... return len(result)==0

And then apply the filter on the sheet:

>>> del sheet.row[filter_row]
>>> sheet
pyexcel sheet:
+---+---+---+

(continues on next page)

2.6. New tutorial 39

pyexcel, Release 0.7.3

(continued from previous page)

| 1 | 2 | 3 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+

2.6.6 Book
You access each cell via this syntax:

book[sheet_index][row, column]

or:

book["sheet_name"][row, column]

Suppose you have the following sheets:

And you can randomly access a cell in a sheet:

>>> book = pyexcel.get_book(file_name="example.xls")
>>> print(book["Sheet 1"][0,0])
1
>>> print(book[0][0,0]) # the same cell
1

� Tip

With pyexcel, you can regard single sheet as an two dimensional array and multi-sheet excel book as an ordered
dictionary of two dimensional arrays.

Write multiple sheet excel book
Suppose you have previous data as a dictionary and you want to save it as multiple sheet excel file:

>>> content = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]

(continues on next page)

40 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

...]

... }
>>> book = pyexcel.get_book(bookdict=content)
>>> book.save_as("output.xls")

You shall get a xls file

Read multiple sheet excel file
Let’s read the previous file back:

>>> book = pyexcel.get_book(file_name="output.xls")
>>> sheets = book.to_dict()
>>> for name in sheets.keys():
... print(name)
Sheet 1
Sheet 2
Sheet 3

Get content

>>> book_dict = {
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...],
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...]
... }
>>> book = pyexcel.get_book(bookdict=book_dict)
>>> book
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+

(continues on next page)

2.6. New tutorial 41

pyexcel, Release 0.7.3

(continued from previous page)

| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+
>>> print(book.rst)
Sheet 1:
= = =
1 2 3
4 5 6
7 8 9
= = =
Sheet 2:
=== === ===
X Y Z
1.0 2.0 3.0
4.0 5.0 6.0
=== === ===
Sheet 3:
=== === ===
O P Q
3.0 2.0 1.0
4.0 3.0 2.0
=== === ===

You can get the direct access to underneath stream object. In some situation, it is desired.

>>> stream = book.stream.plain

The returned stream object has the content formatted in plain format for further reading.

Set content

Surely, you could set content to an instance of pyexcel.Book .

>>> other_book = pyexcel.Book()
>>> other_book.bookdict = book_dict
>>> print(other_book.plain)
Sheet 1:
1 2 3
4 5 6
7 8 9
Sheet 2:
X Y Z

(continues on next page)

42 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

1.0 2.0 3.0
4.0 5.0 6.0
Sheet 3:
O P Q
3.0 2.0 1.0
4.0 3.0 2.0

You can set via ‘xls’ attribute too.

>>> another_book = pyexcel.Book()
>>> another_book.xls = other_book.xls
>>> print(another_book.mediawiki)
Sheet 1:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| align="right"| 1 || align="right"| 2 || align="right"| 3
|-
| align="right"| 4 || align="right"| 5 || align="right"| 6
|-
| align="right"| 7 || align="right"| 8 || align="right"| 9
|}
Sheet 2:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| X || Y || Z
|-
| 1 || 2 || 3
|-
| 4 || 5 || 6
|}
Sheet 3:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| O || P || Q
|-
| 3 || 2 || 1
|-
| 4 || 3 || 2
|}

Access to individual sheets

You can access individual sheet of a book via attribute:

>>> book = pyexcel.get_book(file_name="book.xls")
>>> book.sheet3
sheet3:
+---+---+---+
| 1 | 2 | 3 |

(continues on next page)

2.6. New tutorial 43

pyexcel, Release 0.7.3

(continued from previous page)

+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

or via array notations:

>>> book["sheet 1"] # there is a space in the sheet name
sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+

Merge excel books

Suppose you have two excel books and each had three sheets. You can merge them and get a new book:

You also can merge individual sheets:

>>> book1 = pyexcel.get_book(file_name="book1.xls")
>>> book2 = pyexcel.get_book(file_name="book2.xlsx")
>>> merged_book = book1 + book2
>>> merged_book = book1["Sheet 1"] + book2["Sheet 2"]
>>> merged_book = book1["Sheet 1"] + book2
>>> merged_book = book1 + book2["Sheet 2"]

Manipulate individual sheets

merge sheets into a single sheet

Suppose you want to merge many csv files row by row into a new sheet.

>>> import glob
>>> merged = pyexcel.Sheet()
>>> for file in glob.glob("*.csv"):
... merged.row += pyexcel.get_sheet(file_name=file)
>>> merged.save_as("merged.csv")

How do I read a book, process it and save to a new book

Yes, you can do that. The code looks like this:

import pyexcel

book = pyexcel.get_book(file_name="yourfile.xls")
for sheet in book:

do you processing with sheet
(continues on next page)

44 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

do filtering?
pass

book.save_as("output.xls")

What would happen if I save a multi sheet book into “csv” file

Well, you will get one csv file per each sheet. Suppose you have these code:

>>> content = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... }
>>> book = pyexcel.Book(content)
>>> book.save_as("myfile.csv")

You will end up with three csv files:

>>> import glob
>>> outputfiles = glob.glob("myfile_*.csv")
>>> for file in sorted(outputfiles):
... print(file)
...
myfile__Sheet 1__0.csv
myfile__Sheet 2__1.csv
myfile__Sheet 3__2.csv

and their content is the value of the dictionary at the corresponding key

Alternatively, you could use save_book_as() function

>>> pyexcel.save_book_as(bookdict=content, dest_file_name="myfile.csv")

2.6. New tutorial 45

pyexcel, Release 0.7.3

After I have saved my multiple sheet book in csv format, how do I get them back

First of all, you can read them back individual as csv file using meth:~pyexcel.get_sheet method. Secondly, the pyexcel
can do the magic to load all of them back into a book. You will just need to provide the common name before the
separator “__”:

>>> book2 = pyexcel.get_book(file_name="myfile.csv")
>>> book2
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+

2.6.7 Working with databases
How to import an excel sheet to a database using SQLAlchemy

ò Note

You can find the complete code of this example in examples folder on github

Before going ahead, let’s import the needed components and initialize sql engine and table base:

>>> import os
>>> import pyexcel as p
>>> from sqlalchemy import create_engine
>>> from sqlalchemy.ext.declarative import declarative_base
>>> from sqlalchemy import Column , Integer, String, Float, Date
>>> from sqlalchemy.orm import sessionmaker
>>> engine = create_engine("sqlite:///birth.db")
>>> Base = declarative_base()
>>> Session = sessionmaker(bind=engine)

46 Chapter 2. Support the project

pyexcel, Release 0.7.3

Let’s suppose we have the following database model:

>>> class BirthRegister(Base):
... __tablename__='birth'
... id=Column(Integer, primary_key=True)
... name=Column(String)
... weight=Column(Float)
... birth=Column(Date)

Let’s create the table:

>>> Base.metadata.create_all(engine)

Now here is a sample excel file to be saved to the table:

Here is the code to import it:

>>> session = Session() # obtain a sql session
>>> p.save_as(file_name="birth.xls", name_columns_by_row=0, dest_session=session, dest_
→˓table=BirthRegister)

Done it. It is that simple. Let’s verify what has been imported to make sure.

>>> sheet = p.get_sheet(session=session, table=BirthRegister)
>>> sheet
birth:
+------------+----+-------+--------+
| birth | id | name | weight |
+------------+----+-------+--------+
| 2015-02-03 | 1 | Adam | 3.4 |
+------------+----+-------+--------+
| 2014-11-12 | 2 | Smith | 4.2 |
+------------+----+-------+--------+

2.7 Old tutorial

2.7.1 Work with excel files

. Warning

The pyexcel DOES NOT consider Fonts, Styles, Formulas and Charts at all. When you load a stylish excel and
update it, you definitely will lose all those styles.

Open a csv file

Read a csv file is simple:

>>> import pyexcel as p
>>> sheet = p.get_sheet(file_name="example.csv")
>>> sheet
example.csv:
+---+---+---+
| 1 | 4 | 7 |

(continues on next page)

2.7. Old tutorial 47

pyexcel, Release 0.7.3

(continued from previous page)

+---+---+---+
| 2 | 5 | 8 |
+---+---+---+
| 3 | 6 | 9 |
+---+---+---+

The same applies to a tsv file:

>>> sheet = p.get_sheet(file_name="example.tsv")
>>> sheet
example.tsv:
+---+---+---+
| 1 | 4 | 7 |
+---+---+---+
| 2 | 5 | 8 |
+---+---+---+
| 3 | 6 | 9 |
+---+---+---+

Meanwhile, a tab separated file can be read as csv too. You can specify a delimiter parameter.

>>> with open('tab_example.csv', 'w') as f:
... unused = f.write('I\tam\ttab\tseparated\tcsv\n') # for passing doctest
... unused = f.write('You\tneed\tdelimiter\tparameter\n') # unused is added
>>> sheet = p.get_sheet(file_name="tab_example.csv", delimiter='\t')
>>> sheet
tab_example.csv:
+-----+------+-----------+-----------+-----+
| I | am | tab | separated | csv |
+-----+------+-----------+-----------+-----+
| You | need | delimiter | parameter | |
+-----+------+-----------+-----------+-----+

Add a new row to an existing file

Suppose you have one data file as the following:

And you want to add a new row:

12, 11, 10

Here is the code:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.row += [12, 11, 10]
>>> sheet.save_as("new_example.xls")
>>> pe.get_sheet(file_name="new_example.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 7 |
+----------+----------+----------+

(continues on next page)

48 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

| 2 | 5 | 8 |
+----------+----------+----------+
| 3 | 6 | 9 |
+----------+----------+----------+
| 12 | 11 | 10 |
+----------+----------+----------+

Update an existing row to an existing file

Suppose you want to update the last row of the example file as:

[‘N/A’, ‘N/A’, ‘N/A’]

Here is the sample code:

.. code-block:: python

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.row[3] = ['N/A', 'N/A', 'N/A']
>>> sheet.save_as("new_example1.xls")
>>> pe.get_sheet(file_name="new_example1.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 7 |
+----------+----------+----------+
| 2 | 5 | 8 |
+----------+----------+----------+
| N/A | N/A | N/A |
+----------+----------+----------+

Add a new column to an existing file

And you want to add a column instead:

[“Column 4”, 10, 11, 12]

Here is the code:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.column += ["Column 4", 10, 11, 12]
>>> sheet.save_as("new_example2.xls")
>>> pe.get_sheet(file_name="new_example2.xls")
pyexcel_sheet1:
+----------+----------+----------+----------+
| Column 1 | Column 2 | Column 3 | Column 4 |
+----------+----------+----------+----------+
| 1 | 4 | 7 | 10 |
+----------+----------+----------+----------+
| 2 | 5 | 8 | 11 |
+----------+----------+----------+----------+

(continues on next page)

2.7. Old tutorial 49

pyexcel, Release 0.7.3

(continued from previous page)

| 3 | 6 | 9 | 12 |
+----------+----------+----------+----------+

Update an existing column to an existing file

Again let’s update “Column 3” with:

[100, 200, 300]

Here is the sample code:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls")
>>> sheet.column[2] = ["Column 3", 100, 200, 300]
>>> sheet.save_as("new_example3.xls")
>>> pe.get_sheet(file_name="new_example3.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 100 |
+----------+----------+----------+
| 2 | 5 | 200 |
+----------+----------+----------+
| 3 | 6 | 300 |
+----------+----------+----------+

Alternatively, you could have done like this:

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> sheet.column["Column 3"] = [100, 200, 300]
>>> sheet.save_as("new_example4.xls")
>>> pe.get_sheet(file_name="new_example4.xls")
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 4 | 100 |
+----------+----------+----------+
| 2 | 5 | 200 |
+----------+----------+----------+
| 3 | 6 | 300 |
+----------+----------+----------+

How about the same alternative solution to previous row based example? Well, you’d better to have the following kind
of data:

And then you want to update “Row 3” with for example:

[100, 200, 300]

These code would do the job:

50 Chapter 2. Support the project

pyexcel, Release 0.7.3

>>> import pyexcel as pe
>>> sheet = pe.get_sheet(file_name="row_example.xls", name_rows_by_column=0)
>>> sheet.row["Row 3"] = [100, 200, 300]
>>> sheet.save_as("new_example5.xls")
>>> pe.get_sheet(file_name="new_example5.xls")
pyexcel_sheet1:
+-------+-----+-----+-----+
| Row 1 | 1 | 2 | 3 |
+-------+-----+-----+-----+
| Row 2 | 4 | 5 | 6 |
+-------+-----+-----+-----+
| Row 3 | 100 | 200 | 300 |
+-------+-----+-----+-----+

2.7.2 Work with excel files in memory
Excel files in memory can be manipulated directly without saving it to physical disk and vice versa. This is useful in
excel file handling at file upload or in excel file download. For example:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.get_sheet(file_type="csv", file_content=content)
>>> sheet.csv
'1,2,3\r\n3,4,5\r\n'

file type as its attributes

Since version 0.3.0, each supported file types became an attribute of the Sheet and Book class. What it means is that:

1. Read the content in memory

2. Set the content in memory

For example, after you have your Sheet and Book instance, you could access its content in a support file type by using
its dot notation. The code in previous section could be rewritten as:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.Sheet()
>>> sheet.csv = content
>>> sheet.array
[[1, 2, 3], [3, 4, 5]]

Read any supported excel and respond its content in json

You can find a real world example in examples/memoryfile/ directory: pyexcel_server.py. Here is the example snippet

1 def upload():
2 if request.method == 'POST' and 'excel' in request.files:
3 # handle file upload
4 filename = request.files['excel'].filename
5 extension = filename.split(".")[-1]
6 # Obtain the file extension and content
7 # pass a tuple instead of a file name

(continues on next page)

2.7. Old tutorial 51

pyexcel, Release 0.7.3

(continued from previous page)

8 content = request.files['excel'].read()
9 if sys.version_info[0] > 2:

10 # in order to support python 3
11 # have to decode bytes to str
12 content = content.decode('utf-8')
13 sheet = pe.get_sheet(file_type=extension, file_content=content)
14 # then use it as usual
15 sheet.name_columns_by_row(0)
16 # respond with a json
17 return jsonify({"result": sheet.dict})
18 return render_template('upload.html')

request.files[‘excel’] in line 4 holds the file object. line 5 finds out the file extension. line 13 obtains a sheet instance.
line 15 uses the first row as data header. line 17 sends the json representation of the excel file back to client browser.

Write to memory and respond to download

1 data = [
2 [...],
3 ...
4]
5

6 @app.route('/download')
7 def download():
8 sheet = pe.Sheet(data)
9 output = make_response(sheet.csv)

10 output.headers["Content-Disposition"] = "attachment; filename=export.csv"
11 output.headers["Content-type"] = "text/csv"
12 return output

make_response is a Flask utility to make a memory content as http response.

ò Note

You can find the corresponding source code at examples/memoryfile

Relevant packages

Readily made plugins have been made on top of this example. Here is a list of them:

framework plugin/middleware/extension
Flask Flask-Excel
Django django-excel
Pyramid pyramid-excel

And you may make your own by using pyexcel-webio

52 Chapter 2. Support the project

https://github.com/chfw/pyexcel/tree/master/examples/memoryfile
https://github.com/chfw/Flask-Excel
https://github.com/chfw/django-excel
https://github.com/chfw/pyramid-excel
https://github.com/chfw/pyexcel-webio

pyexcel, Release 0.7.3

2.7.3 Sheet: Data conversion
How to obtain records from an excel sheet

Suppose you want to process the following excel data :

Here are the example code:

>>> import pyexcel as pe
>>> records = pe.get_records(file_name="your_file.xls")
>>> for record in records:
... print("%s is aged at %d" % (record['Name'], record['Age']))
Adam is aged at 28
Beatrice is aged at 29
Ceri is aged at 30
Dean is aged at 26

How to save an python array as an excel file

Suppose you have the following array:

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file

>>> import pyexcel
>>> pyexcel.save_as(array=data, dest_file_name="example.xls")

Let’s verify it:

>>> pyexcel.get_sheet(file_name="example.xls")
pyexcel_sheet1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

How to save an python array as a csv file with special delimiter

Suppose you have the following array:

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file

>>> import pyexcel
>>> pyexcel.save_as(array=data,
... dest_file_name="example.csv",
... dest_delimiter=':')

Let’s verify it:

2.7. Old tutorial 53

pyexcel, Release 0.7.3

>>> with open("example.csv") as f:
... for line in f.readlines():
... print(line.rstrip())
...
1:2:3
4:5:6
7:8:9

How to get a dictionary from an excel sheet

Suppose you have a csv, xls, xlsx file as the following:

The following code will give you data series in a dictionary:

>>> import pyexcel
>>> from pyexcel._compact import OrderedDict
>>> my_dict = pyexcel.get_dict(file_name="example_series.xls", name_columns_by_row=0)
>>> isinstance(my_dict, OrderedDict)
True
>>> for key, values in my_dict.items():
... print({str(key): values})
{'Column 1': [1, 4, 7]}
{'Column 2': [2, 5, 8]}
{'Column 3': [3, 6, 9]}

Please note that my_dict is an OrderedDict.

How to obtain a dictionary from a multiple sheet book

Suppose you have a multiple sheet book as the following:

Here is the code to obtain those sheets as a single dictionary:

>>> import pyexcel
>>> import json
>>> book_dict = pyexcel.get_book_dict(file_name="book.xls")
>>> isinstance(book_dict, OrderedDict)
True
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

How to save a dictionary of two dimensional array as an excel file

Suppose you want to save the below dictionary to an excel file

>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]

(continues on next page)

54 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

...],

... 'Sheet 2':

... [

... ['X', 'Y', 'Z'],

... [1.0, 2.0, 3.0],

... [4.0, 5.0, 6.0]

...],

... 'Sheet 3':

... [

... ['O', 'P', 'Q'],

... [3.0, 2.0, 1.0],

... [4.0, 3.0, 2.0]

...]

... }

Here is the code:

>>> pyexcel.save_book_as(
... bookdict=a_dictionary_of_two_dimensional_arrays,
... dest_file_name="book.xls"
...)

If you want to preserve the order of sheets in your dictionary, you have to pass on an ordered dictionary to the function
itself. For example:

>>> data = OrderedDict()
>>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']})
>>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']})
>>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Sheet 3']})
>>> pyexcel.save_book_as(bookdict=data, dest_file_name="book.xls")

Let’s verify its order:

>>> book_dict = pyexcel.get_book_dict(file_name="book.xls")
>>> for key, item in book_dict.items():
... print(json.dumps({key: item}))
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

Please notice that “Sheet 2” is the first item in the book_dict, meaning the order of sheets are preserved.

How to import an excel sheet to a database using SQLAlchemy

ò Note

You can find the complete code of this example in examples folder on github

Before going ahead, let’s import the needed components and initialize sql engine and table base:

>>> from sqlalchemy import create_engine
>>> from sqlalchemy.ext.declarative import declarative_base

(continues on next page)

2.7. Old tutorial 55

pyexcel, Release 0.7.3

(continued from previous page)

>>> from sqlalchemy import Column , Integer, String, Float, Date
>>> from sqlalchemy.orm import sessionmaker
>>> engine = create_engine("sqlite:///birth.db")
>>> Base = declarative_base()
>>> Session = sessionmaker(bind=engine)

Let’s suppose we have the following database model:

>>> class BirthRegister(Base):
... __tablename__='birth'
... id=Column(Integer, primary_key=True)
... name=Column(String)
... weight=Column(Float)
... birth=Column(Date)

Let’s create the table:

>>> Base.metadata.create_all(engine)

Now here is a sample excel file to be saved to the table:

Here is the code to import it:

>>> session = Session() # obtain a sql session
>>> pyexcel.save_as(file_name="birth.xls", name_columns_by_row=0, dest_session=session,␣
→˓dest_table=BirthRegister)

Done it. It is that simple. Let’s verify what has been imported to make sure.

>>> sheet = pyexcel.get_sheet(session=session, table=BirthRegister)
>>> sheet
birth:
+------------+----+-------+--------+
| birth | id | name | weight |
+------------+----+-------+--------+
| 2015-02-03 | 1 | Adam | 3.4 |
+------------+----+-------+--------+
| 2014-11-12 | 2 | Smith | 4.2 |
+------------+----+-------+--------+

How to open an xls file and save it as csv

Suppose we want to save previous used example ‘birth.xls’ as a csv file

>>> import pyexcel
>>> pyexcel.save_as(file_name="birth.xls", dest_file_name="birth.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = pyexcel.get_sheet(file_name="birth.csv")
>>> sheet
birth.csv:
+-------+--------+----------+

(continues on next page)

56 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

ò Note

Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls file
will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding
job.

How to open an xls file and save it as xlsx

. Warning

Formula, charts, images and formatting in xls file will disappear as pyexcel does not support Formula, charts, images
and formatting.

Let use previous example and save it as ods instead

>>> import pyexcel
>>> pyexcel.save_as(file_name="birth.xls",
... dest_file_name="birth.xlsx") # change the file extension

Again let’s verify what we have gotten:

>>> sheet = pyexcel.get_sheet(file_name="birth.xlsx")
>>> sheet
pyexcel_sheet1:
+-------+--------+----------+
| name | weight | birth |
+-------+--------+----------+
| Adam | 3.4 | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2 | 12/11/14 |
+-------+--------+----------+

How to open a xls multiple sheet excel book and save it as csv

Well, you write similar codes as before but you will need to use save_book_as() function.

2.7.4 Dot notation for data source
Since version 0.3.0, the data source becomes an attribute of the pyexcel native classes. All support data format is a dot
notation away.

2.7. Old tutorial 57

pyexcel, Release 0.7.3

For sheet

Get content

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.get_sheet(file_type="csv", file_content=content)
>>> sheet.tsv
'1\t2\t3\r\n3\t4\t5\r\n'
>>> print(sheet.simple)
csv:
- - -
1 2 3
3 4 5
- - -

What’s more, you could as well set value to an attribute, for example:

>>> import pyexcel
>>> content = "1,2,3\n3,4,5"
>>> sheet = pyexcel.Sheet()
>>> sheet.csv = content
>>> sheet.array
[[1, 2, 3], [3, 4, 5]]

You can get the direct access to underneath stream object. In some situation, it is desired.

>>> stream = sheet.stream.tsv

The returned stream object has tsv formatted content for reading.

Set content

What you could further do is to set a memory stream of any supported file format to a sheet. For example:

>>> another_sheet = pyexcel.Sheet()
>>> another_sheet.xls = sheet.xls
>>> another_sheet.content
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 3 | 4 | 5 |
+---+---+---+

Yet, it is possible assign a absolute url to an online excel file to an instance of
pyexcel.Sheet.

>>> another_sheet.url = "https://github.com/pyexcel/pyexcel/raw/master/examples/basics/
→˓multiple-sheets-example.xls"
>>> another_sheet.content
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |

(continues on next page)

58 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

For book

The same dot notation is available to pyexcel.Book as well.

Get content

>>> book_dict = {
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...],
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...]
... }
>>> book = pyexcel.get_book(bookdict=book_dict)
>>> book
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+

(continues on next page)

2.7. Old tutorial 59

pyexcel, Release 0.7.3

(continued from previous page)

| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+
>>> print(book.rst)
Sheet 1:
= = =
1 2 3
4 5 6
7 8 9
= = =
Sheet 2:
=== === ===
X Y Z
1.0 2.0 3.0
4.0 5.0 6.0
=== === ===
Sheet 3:
=== === ===
O P Q
3.0 2.0 1.0
4.0 3.0 2.0
=== === ===

You can get the direct access to underneath stream object. In some situation, it is desired.

>>> stream = sheet.stream.plain

The returned stream object has the content formatted in plain format for further reading.

Set content

Surely, you could set content to an instance of pyexcel.Book .

>>> other_book = pyexcel.Book()
>>> other_book.bookdict = book_dict
>>> print(other_book.plain)
Sheet 1:
1 2 3
4 5 6
7 8 9
Sheet 2:
X Y Z
1.0 2.0 3.0
4.0 5.0 6.0
Sheet 3:
O P Q
3.0 2.0 1.0
4.0 3.0 2.0

You can set via ‘xls’ attribute too.

60 Chapter 2. Support the project

pyexcel, Release 0.7.3

>>> another_book = pyexcel.Book()
>>> another_book.xls = other_book.xls
>>> print(another_book.mediawiki)
Sheet 1:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| align="right"| 1 || align="right"| 2 || align="right"| 3
|-
| align="right"| 4 || align="right"| 5 || align="right"| 6
|-
| align="right"| 7 || align="right"| 8 || align="right"| 9
|}
Sheet 2:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| X || Y || Z
|-
| 1 || 2 || 3
|-
| 4 || 5 || 6
|}
Sheet 3:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| O || P || Q
|-
| 3 || 2 || 1
|-
| 4 || 3 || 2
|}

How about setting content via a url?

>>> another_book.url = "https://github.com/pyexcel/pyexcel/raw/master/examples/basics/
→˓multiple-sheets-example.xls"
>>> another_book
Sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
Sheet 2:
+---+---+---+
| X | Y | Z |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+

(continues on next page)

2.7. Old tutorial 61

pyexcel, Release 0.7.3

(continued from previous page)

| 4 | 5 | 6 |
+---+---+---+
Sheet 3:
+---+---+---+
| O | P | Q |
+---+---+---+
| 3 | 2 | 1 |
+---+---+---+
| 4 | 3 | 2 |
+---+---+---+

Getters and Setters

You can pass on source specific parameters to getter and setter functions.

>>> content = "1-2-3\n3-4-5"
>>> sheet = pyexcel.Sheet()
>>> sheet.set_csv(content, delimiter="-")
>>> sheet.csv
'1,2,3\r\n3,4,5\r\n'
>>> sheet.get_csv(delimiter="|")
'1|2|3\r\n3|4|5\r\n'

2.7.5 Read partial data
When you are dealing with huge amount of data, e.g. 64GB, obviously you would not like to fill up your memory with
those data. What you may want to do is, record data from Nth line, take M records and stop. And you only want to use
your memory for the M records, not for beginning part nor for the tail part.

Hence partial read feature is developed to read partial data into memory for processing.

You can paginate by row, by column and by both, hence you dictate what portion of the data to read back. But remember
only row limit features help you save memory. Let’s you use this feature to record data from Nth column, take M number
of columns and skip the rest. You are not going to reduce your memory footprint.

Why did not I see above benefit?

This feature depends heavily on the implementation details.

`pyexcel-xls`_ (xlrd), `pyexcel-xlsx`_ (openpyxl), `pyexcel-ods`_ (odfpy) and `pyexcel-ods3`_ (pyexcel-ezodf) will
read all data into memory. Because xls, xlsx and ods file are effective a zipped folder, all four will unzip the folder and
read the content in xml format in full, so as to make sense of all details.

Hence, during the partial data is been returned, the memory consumption won’t differ from reading the whole data
back. Only after the partial data is returned, the memory comsumption curve shall jump the cliff. So pagination code
here only limits the data returned to your program.

With that said, `pyexcel-xlsxr`_, `pyexcel-odsr`_ and `pyexcel-htmlr`_ DOES read partial data into memory. Those
three are implemented in such a way that they consume the xml(html) when needed. When they have read designated
portion of the data, they stop, even if they are half way through.

In addition, pyexcel’s csv readers can read partial data into memory too.

Let’s assume the following file is a huge csv file:

62 Chapter 2. Support the project

pyexcel, Release 0.7.3

>>> import datetime
>>> import pyexcel as pe
>>> data = [
... [1, 21, 31],
... [2, 22, 32],
... [3, 23, 33],
... [4, 24, 34],
... [5, 25, 35],
... [6, 26, 36]
...]
>>> pe.save_as(array=data, dest_file_name="your_file.csv")

And let’s pretend to read partial data:

>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3)
your_file.csv:
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

And you could as well do the same for columns:

>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 21 | 31 |
+----+----+
| 22 | 32 |
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+
| 26 | 36 |
+----+----+

Obvious, you could do both at the same time:

>>> pe.get_sheet(file_name="your_file.csv",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+

(continues on next page)

2.7. Old tutorial 63

pyexcel, Release 0.7.3

(continued from previous page)

| 25 | 35 |
+----+----+

The pagination support is available across all pyexcel plugins.

ò Note

No column pagination support for query sets as data source.

Formatting while transcoding a big data file

If you are transcoding a big data set, conventional formatting method would not help unless a on-demand free RAM is
available. However, there is a way to minimize the memory footprint of pyexcel while the formatting is performed.

Let’s continue from previous example. Suppose we want to transcode “your_file.csv” to “your_file.xls” but increase
each element by 1.

What we can do is to define a row renderer function as the following:

>>> def increment_by_one(row):
... for element in row:
... yield element + 1

Then pass it onto save_as function using row_renderer:

>>> pe.isave_as(file_name="your_file.csv",
... row_renderer=increment_by_one,
... dest_file_name="your_file.xlsx")

ò Note

If the data content is from a generator, isave_as has to be used.

We can verify if it was done correctly:

>>> pe.get_sheet(file_name="your_file.xlsx")
your_file.csv:
+---+----+----+
| 2 | 22 | 32 |
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+
| 6 | 26 | 36 |
+---+----+----+
| 7 | 27 | 37 |
+---+----+----+

64 Chapter 2. Support the project

pyexcel, Release 0.7.3

2.7.6 Sheet: Data Access
Iterate a csv file

Here is the way to read the csv file and iterate through each row:

>>> sheet = pyexcel.get_sheet(file_name='tutorial.csv')
>>> for row in sheet:
... print("%s: %s" % (row[0], row[1]))
Name: Age
Chu Chu: 10
Mo mo: 11

Often people wanted to use csv.Dict reader to read it because it has a header. Here is how you do it with pyexcel:

1 >>> sheet = pyexcel.get_sheet(file_name='tutorial.csv')
2 >>> sheet.name_columns_by_row(0)
3 >>> for row in sheet:
4 ... print("%s: %s" % (row[0], row[1]))
5 Chu Chu: 10
6 Mo mo: 11

Line 2 remove the header from the actual content. The removed header can be used to access its columns using the
name itself, for example:

>>> sheet.column['Age']
[10, 11]

Random access to individual cell

Top left corner of a sheet is (0, 0), meaning both row index and column index start from 0. To randomly access a cell
of Sheet instance, two syntax are available:

sheet[row, column]

This syntax helps you iterate the data by row and by column. If you use excel positions, the syntax below help you get
the cell instantly without converting alphabet column index to integer:

sheet['A1']

Please note that with excel positions, top left corner is ‘A1’.

For example: suppose you have the following data sheet,

here is the example code showing how you can randomly access a cell:

>>> sheet = pyexcel.get_sheet(file_name="example.xls")
>>> sheet.content
+---------+---+---+---+
| Example | X | Y | Z |
+---------+---+---+---+
| a | 1 | 2 | 3 |
+---------+---+---+---+
| b | 4 | 5 | 6 |
+---------+---+---+---+
| c | 7 | 8 | 9 |

(continues on next page)

2.7. Old tutorial 65

pyexcel, Release 0.7.3

(continued from previous page)

+---------+---+---+---+
>>> print(sheet[3, 2])
8
>>> print(sheet["D3"])
6
>>> sheet[2, 3] = 10
>>> print(sheet[2, 3])
10

ò Note

In order to set a value to a cell, please use sheet[row_index, column_index] = new_value

Random access to rows and columns

Continue with previous excel file, you can access row and column separately:

>>> sheet.row[1]
['a', 1, 2, 3]
>>> sheet.column[2]
['Y', 2, 5, 8]

Use custom names instead of index

Alternatively, it is possible to use the first row to refer to each columns:

>>> sheet.name_columns_by_row(0)
>>> print(sheet[1, "Y"])
5
>>> sheet[1, "Y"] = 100
>>> print(sheet[1, "Y"])
100

You have noticed the row index has been changed. It is because first row is taken as the column names, hence all rows
after the first row are shifted. Now accessing the columns are changed too:

>>> sheet.column['Y']
[2, 100, 8]

Hence access the same cell, this statement also works:

>>> sheet.column['Y'][1]
100

Further more, it is possible to use first column to refer to each rows:

>>> sheet.name_rows_by_column(0)

To access the same cell, we can use this line:

>>> sheet.row["b"][1]
100

66 Chapter 2. Support the project

pyexcel, Release 0.7.3

For the same reason, the row index has been reduced by 1. Since we have named columns and rows, it is possible to
access the same cell like this:

>>> print(sheet["b", "Y"])
100
>>> sheet["b", "Y"] = 200
>>> print(sheet["b", "Y"])
200

ò Note

When you have named your rows and columns, in order to set a value to a cell, please use sheet[row_name, col-
umn_name] = new_value

For multiple sheet file, you can regard it as three dimensional array if you use Book . So, you access each cell via this
syntax:

book[sheet_index][row, column]

or:

book["sheet_name"][row, column]

Suppose you have the following sheets:

And you can randomly access a cell in a sheet:

>>> book = pyexcel.get_book(file_name="example.xls")
>>> print(book["Sheet 1"][0,0])
1
>>> print(book[0][0,0]) # the same cell
1

� Tip

With pyexcel, you can regard single sheet reader as an two dimensional array and multi-sheet excel book reader as
a ordered dictionary of two dimensional arrays.

Reading a single sheet excel file

Suppose you have a csv, xls, xlsx file as the following:

The following code will give you the data in json:

>>> import json
>>> # "example.csv","example.xlsx","example.xlsm"
>>> sheet = pyexcel.get_sheet(file_name="example.xls")
>>> print(json.dumps(sheet.to_array()))
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

2.7. Old tutorial 67

pyexcel, Release 0.7.3

Read the sheet as a dictionary

Suppose you have a csv, xls, xlsx file as the following:

The following code will give you data series in a dictionary:

>>> # "example.xls","example.xlsx","example.xlsm"
>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)

>>> sheet.to_dict()
OrderedDict([('Column 1', [1, 4, 7]), ('Column 2', [2, 5, 8]), ('Column 3', [3, 6, 9])])

Can I get an array of dictionaries per each row?

Suppose you have the following data:

The following code will produce what you want:

>>> # "example.csv","example.xlsx","example.xlsm"
>>> sheet = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> records = sheet.to_records()
>>> for record in records:
... keys = sorted(record.keys())
... print("{")
... for key in keys:
... print("'%s':%d" % (key, record[key]))
... print("}")
{
'X':1
'Y':2
'Z':3
}
{
'X':4
'Y':5
'Z':6
}
{
'X':7
'Y':8
'Z':9
}

Writing a single sheet excel file

Suppose you have an array as the following:

1 2 3
4 5 6
7 8 9

The following code will write it as an excel file of your choice:

68 Chapter 2. Support the project

pyexcel, Release 0.7.3

.. testcode::

>>> array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> # "output.xls" "output.xlsx" "output.ods" "output.xlsm"
>>> sheet = pyexcel.Sheet(array)
>>> sheet.save_as("output.csv")

Suppose you have a dictionary as the following:

The following code will write it as an excel file of your choice:

>>> example_dict = {"Column 1": [1, 2, 3], "Column 2": [4, 5, 6], "Column 3": [7, 8, 9]}
>>> # "output.xls" "output.xlsx" "output.ods" "output.xlsm"
>>> sheet = pyexcel.get_sheet(adict=example_dict)
>>> sheet.save_as("output.csv")

Write multiple sheet excel file

Suppose you have previous data as a dictionary and you want to save it as multiple sheet excel file:

>>> content = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... }
>>> book = pyexcel.get_book(bookdict=content)
>>> book.save_as("output.xls")

You shall get a xls file

Read multiple sheet excel file

Let’s read the previous file back:

>>> book = pyexcel.get_book(file_name="output.xls")
>>> sheets = book.to_dict()
>>> for name in sheets.keys():
... print(name)
Sheet 1

(continues on next page)

2.7. Old tutorial 69

pyexcel, Release 0.7.3

(continued from previous page)

Sheet 2
Sheet 3

Work with data series in a single sheet

Suppose you have the following data in any of the supported excel formats again:

>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)

Play with data

You can get headers:

>>> print(list(sheet.colnames))
['Column 1', 'Column 2', 'Column 3']

You can use a utility function to get all in a dictionary:

>>> sheet.to_dict()
OrderedDict([('Column 1', [1, 4, 7]), ('Column 2', [2, 5, 8]), ('Column 3', [3, 6, 9])])

Maybe you want to get only the data without the column headers. You can call rows() instead:

>>> list(sheet.rows())
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

You can get data from the bottom to the top one by calling rrows() instead:

>>> list(sheet.rrows())
[[7, 8, 9], [4, 5, 6], [1, 2, 3]]

You might want the data arranged vertically. You can call columns() instead:

>>> list(sheet.columns())
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

You can get columns in reverse sequence as well by calling rcolumns() instead:

>>> list(sheet.rcolumns())
[[3, 6, 9], [2, 5, 8], [1, 4, 7]]

Do you want to flatten the data? You can get the content in one dimensional array. If you are interested in playing
with one dimensional enumeration, you can check out these functions enumerate(), reverse(), vertical(), and
rvertical():

>>> list(sheet.enumerate())
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(sheet.reverse())
[9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> list(sheet.vertical())
[1, 4, 7, 2, 5, 8, 3, 6, 9]
>>> list(sheet.rvertical())
[9, 6, 3, 8, 5, 2, 7, 4, 1]

70 Chapter 2. Support the project

pyexcel, Release 0.7.3

2.7.7 Sheet: Data manipulation
The data in a sheet is represented by Sheet which maintains the data as a list of lists. You can regard Sheet as a two
dimensional array with additional iterators. Random access to individual column and row is exposed by Column and
Row

Column manipulation

Suppose have one data file as the following:

>>> sheet = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 4 | 7 |
+----------+----------+----------+
| 2 | 5 | 8 |
+----------+----------+----------+
| 3 | 6 | 9 |
+----------+----------+----------+

And you want to update Column 2 with these data: [11, 12, 13]

>>> sheet.column["Column 2"] = [11, 12, 13]
>>> sheet.column[1]
[11, 12, 13]
>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 11 | 7 |
+----------+----------+----------+
| 2 | 12 | 8 |
+----------+----------+----------+
| 3 | 13 | 9 |
+----------+----------+----------+

Remove one column of a data file

If you want to remove Column 2, you can just call:

>>> del sheet.column["Column 2"]
>>> sheet.column["Column 3"]
[7, 8, 9]

The sheet content will become:

>>> sheet
pyexcel sheet:
+----------+----------+
| Column 1 | Column 3 |

(continues on next page)

2.7. Old tutorial 71

pyexcel, Release 0.7.3

(continued from previous page)

+==========+==========+
| 1 | 7 |
+----------+----------+
| 2 | 8 |
+----------+----------+
| 3 | 9 |
+----------+----------+

Append more columns to a data file

Continue from previous example. Suppose you want add two more columns to the data file

Column 4 Column 5
10 13
11 14
12 15

Here is the example code to append two extra columns:

>>> extra_data = [
... ["Column 4", "Column 5"],
... [10, 13],
... [11, 14],
... [12, 15]
...]
>>> sheet2 = pyexcel.Sheet(extra_data)
>>> sheet.column += sheet2
>>> sheet.column["Column 4"]
[10, 11, 12]
>>> sheet.column["Column 5"]
[13, 14, 15]

Here is what you will get:

>>> sheet
pyexcel sheet:
+----------+----------+----------+----------+
| Column 1 | Column 3 | Column 4 | Column 5 |
+==========+==========+==========+==========+
| 1 | 7 | 10 | 13 |
+----------+----------+----------+----------+
| 2 | 8 | 11 | 14 |
+----------+----------+----------+----------+
| 3 | 9 | 12 | 15 |
+----------+----------+----------+----------+

Cherry pick some columns to be removed

Suppose you have the following data:

72 Chapter 2. Support the project

pyexcel, Release 0.7.3

>>> data = [
... ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'],
... [1,2,3,4,5,6,7,9],
...]
>>> sheet = pyexcel.Sheet(data, name_columns_by_row=0)
>>> sheet
pyexcel sheet:
+---+---+---+---+---+---+---+---+
| a | b | c | d | e | f | g | h |
+===+===+===+===+===+===+===+===+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
+---+---+---+---+---+---+---+---+

And you want to remove columns named as: ‘a’, ‘c, ‘e’, ‘h’. This is how you do it:

>>> del sheet.column['a', 'c', 'e', 'h']
>>> sheet
pyexcel sheet:
+---+---+---+---+
| b | d | f | g |
+===+===+===+===+
| 2 | 4 | 6 | 7 |
+---+---+---+---+

What if the headers are in a different row

Suppose you have the following data:

>>> sheet
pyexcel sheet:
+----------+----------+----------+
| 1 | 2 | 3 |
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+

The way to name your columns is to use index 1:

>>> sheet.name_columns_by_row(1)

Here is what you get:

>>> sheet
pyexcel sheet:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 2 | 3 |
+----------+----------+----------+
| 4 | 5 | 6 |
+----------+----------+----------+

2.7. Old tutorial 73

pyexcel, Release 0.7.3

Row manipulation

Suppose you have the following data:

>>> sheet
pyexcel sheet:
+---+---+---+-------+
| a | b | c | Row 1 |
+---+---+---+-------+
| e | f | g | Row 2 |
+---+---+---+-------+
| 1 | 2 | 3 | Row 3 |
+---+---+---+-------+

You can name your rows by column index at 3:

>>> sheet.name_rows_by_column(3)
>>> sheet
pyexcel sheet:
+-------+---+---+---+
| Row 1 | a | b | c |
+-------+---+---+---+
| Row 2 | e | f | g |
+-------+---+---+---+
| Row 3 | 1 | 2 | 3 |
+-------+---+---+---+

Then you can access rows by its name:

>>> sheet.row["Row 1"]
['a', 'b', 'c']

2.7.8 Sheet: Data filtering
use filter() function to apply a filter immediately. The content is modified.

Suppose you have the following data in any of the supported excel formats:

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

>>> import pyexcel

>>> sheet = pyexcel.get_sheet(file_name="example_series.xls", name_columns_by_row=0)
>>> sheet.content
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 1 | 2 | 3 |
+----------+----------+----------+

(continues on next page)

74 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

| 4 | 5 | 6 |
+----------+----------+----------+
| 7 | 8 | 9 |
+----------+----------+----------+

Filter out some data

You may want to filter odd rows and print them in an array of dictionaries:

>>> sheet.filter(row_indices=[0, 2])
>>> sheet.content
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+==========+==========+==========+
| 4 | 5 | 6 |
+----------+----------+----------+

Let’s try to further filter out even columns:

>>> sheet.filter(column_indices=[1])
>>> sheet.content
+----------+----------+
| Column 1 | Column 3 |
+==========+==========+
| 4 | 6 |
+----------+----------+

Save the data

Let’s save the previous filtered data:

>>> sheet.save_as("example_series_filter.xls")

When you open example_series_filter.xls, you will find these data

Column 1 Column 3
2 8

How to filter out empty rows in my sheet?

Suppose you have the following data in a sheet and you want to remove those rows with blanks:

>>> import pyexcel as pe
>>> sheet = pe.Sheet([[1,2,3],['','',''],['','',''],[1,2,3]])

You can use pyexcel.filters.RowValueFilter, which examines each row, return True if the row should be filtered
out. So, let’s define a filter function:

>>> def filter_row(row_index, row):
... result = [element for element in row if element != '']
... return len(result)==0

2.7. Old tutorial 75

pyexcel, Release 0.7.3

And then apply the filter on the sheet:

>>> del sheet.row[filter_row]
>>> sheet
pyexcel sheet:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+

2.7.9 Sheet: Formatting
Previous section has assumed the data is in the format that you want. In reality, you have to manipulate the data types
a bit to suit your needs. Hence, formatters comes into the scene. use format() to apply formatter immediately.

ò Note

int, float and datetime values are automatically detected in csv files since pyexcel version 0.2.2

Convert a column of numbers to strings

Suppose you have the following data:

>>> import pyexcel
>>> data = [
... ["userid","name"],
... [10120,"Adam"],
... [10121,"Bella"],
... [10122,"Cedar"]
...]
>>> sheet = pyexcel.Sheet(data)
>>> sheet.name_columns_by_row(0)
>>> sheet.column["userid"]
[10120, 10121, 10122]

As you can see, userid column is of int type. Next, let’s convert the column to string format:

>>> sheet.column.format("userid", str)
>>> sheet.column["userid"]
['10120', '10121', '10122']

Cleanse the cells in a spread sheet

Sometimes, the data in a spreadsheet may have unwanted strings in all or some cells. Let’s take an example. Suppose
we have a spread sheet that contains all strings but it as random spaces before and after the text values. Some field had
weird characters, such as “ ”:

>>> data = [
... [" Version", " Comments", " Author "],
... [" v0.0.1 ", " Release versions"," Eda"],
... [" v0.0.2 ", "Useful updates ", " Freud"]
...]

(continues on next page)

76 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

>>> sheet = pyexcel.Sheet(data)
>>> sheet.content
+-----------------+------------------------------+----------------------+
| Version | Comments | Author |
+-----------------+------------------------------+----------------------+
| v0.0.1 | Release versions | Eda |
+-----------------+------------------------------+----------------------+
| v0.0.2 | Useful updates | Freud |
+-----------------+------------------------------+----------------------+

Now try to create a custom cleanse function:

.. code-block:: python

>>> def cleanse_func(v):
... v = v.replace(" ", "")
... v = v.rstrip().strip()
... return v
...

Then let’s create a SheetFormatter and apply it:

.. code-block:: python

>>> sheet.map(cleanse_func)

So in the end, you get this:

>>> sheet.content
+---------+------------------+--------+
| Version | Comments | Author |
+---------+------------------+--------+
| v0.0.1 | Release versions | Eda |
+---------+------------------+--------+
| v0.0.2 | Useful updates | Freud |
+---------+------------------+--------+

2.7.10 Book: Sheet operations
Access to individual sheets

You can access individual sheet of a book via attribute:

>>> book = pyexcel.get_book(file_name="book.xls")
>>> book.sheet3
sheet3:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

2.7. Old tutorial 77

pyexcel, Release 0.7.3

or via array notations:

>>> book["sheet 1"] # there is a space in the sheet name
sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+

Merge excel books

Suppose you have two excel books and each had three sheets. You can merge them and get a new book:

You also can merge individual sheets:

>>> book1 = pyexcel.get_book(file_name="book1.xls")
>>> book2 = pyexcel.get_book(file_name="book2.xlsx")
>>> merged_book = book1 + book2
>>> merged_book = book1["Sheet 1"] + book2["Sheet 2"]
>>> merged_book = book1["Sheet 1"] + book2
>>> merged_book = book1 + book2["Sheet 2"]

Manipulate individual sheets

merge sheets into a single sheet

Suppose you want to merge many csv files row by row into a new sheet.

>>> import glob
>>> merged = pyexcel.Sheet()
>>> for file in glob.glob("*.csv"):
... merged.row += pyexcel.get_sheet(file_name=file)
>>> merged.save_as("merged.csv")

How do I read a book, process it and save to a new book

Yes, you can do that. The code looks like this:

import pyexcel

book = pyexcel.get_book(file_name="yourfile.xls")
for sheet in book:

do you processing with sheet
do filtering?
pass

book.save_as("output.xls")

78 Chapter 2. Support the project

pyexcel, Release 0.7.3

What would happen if I save a multi sheet book into “csv” file

Well, you will get one csv file per each sheet. Suppose you have these code:

>>> content = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... }
>>> book = pyexcel.Book(content)
>>> book.save_as("myfile.csv")

You will end up with three csv files:

>>> import glob
>>> outputfiles = glob.glob("myfile_*.csv")
>>> for file in sorted(outputfiles):
... print(file)
...
myfile__Sheet 1__0.csv
myfile__Sheet 2__1.csv
myfile__Sheet 3__2.csv

and their content is the value of the dictionary at the corresponding key

Alternatively, you could use save_book_as() function

>>> pyexcel.save_book_as(bookdict=content, dest_file_name="myfile.csv")

After I have saved my multiple sheet book in csv format, how do I get them back

First of all, you can read them back individual as csv file using meth:~pyexcel.get_sheet method. Secondly, the pyexcel
can do the magic to load all of them back into a book. You will just need to provide the common name before the
separator “__”:

>>> book2 = pyexcel.get_book(file_name="myfile.csv")
>>> book2
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |

(continues on next page)

2.7. Old tutorial 79

pyexcel, Release 0.7.3

(continued from previous page)

+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+

2.8 Cook book

2.8.1 Recipes

. Warning

The pyexcel DOES NOT consider Fonts, Styles and Charts at all. In the resulting excel files, fonts, styles and charts
will not be transferred.

These recipes give a one-stop utility functions for known use cases. Similar functionality can be achieved using other
application interfaces.

Update one column of a data file

Suppose you have one data file as the following:

example.xls

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

And you want to update Column 2 with these data: [11, 12, 13]

Here is the code:

80 Chapter 2. Support the project

pyexcel, Release 0.7.3

>>> from pyexcel.cookbook import update_columns
>>> custom_column = {"Column 2":[11, 12, 13]}
>>> update_columns("example.xls", custom_column, "output.xls")

Your output.xls will have these data:

Column 1 Column 2 Column 3
1 11 7
2 12 8
3 13 9

Update one row of a data file

Suppose you have the same data file:

example.xls

Row 1 1 2 3
Row 2 4 5 6
Row 3 7 8 9

And you want to update the second row with these data: [7, 4, 1]

Here is the code:

>>> from pyexcel.cookbook import update_rows
>>> custom_row = {"Row 1":[11, 12, 13]}
>>> update_rows("example.xls", custom_row, "output.xls")
>>> pyexcel.get_sheet(file_name="output.xls")
pyexcel sheet:
+-------+----+----+----+
| Row 1 | 11 | 12 | 13 |
+-------+----+----+----+
| Row 2 | 4 | 5 | 6 |
+-------+----+----+----+
| Row 3 | 7 | 8 | 9 |
+-------+----+----+----+

Merge two files into one

Suppose you want to merge the following two data files:

example.csv

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

example.xls

2.8. Cook book 81

pyexcel, Release 0.7.3

Column 4 Column 5
10 12
11 13

The following code will merge the tow into one file, say “output.xls”:

>>> from pyexcel.cookbook import merge_two_files
>>> merge_two_files("example.csv", "example.xls", "output.xls")

The output.xls would have the following data:

Column 1 Column 2 Column 3 Column 4 Column 5
1 4 7 10 12
2 5 8 11 13
3 6 9

Select candidate columns of two files and form a new one

Suppose you have these two files:

example.ods

Column 1 Column 2 Column 3 Column 4 Column 5
1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

example.xls

Column 6 Column 7 Column 8 Column 9 Column 10
16 17 18 19 20

>>> data = [
... ["Column 1", "Column 2", "Column 3", "Column 4", "Column 5"],
... [1, 4, 7, 10, 13],
... [2, 5, 8, 11, 14],
... [3, 6, 9, 12, 15]
...]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.csv")
>>> data = [
... ["Column 6", "Column 7", "Column 8", "Column 9", "Column 10"],
... [16, 17, 18, 19, 20]
...]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.xls")

And you want to filter out column 2 and 4 from example.ods, filter out column 6 and 7 and merge them:

82 Chapter 2. Support the project

pyexcel, Release 0.7.3

Column 1 Column 3 Column 5 Column 8 Column 9 Column 10
1 7 13 18 19 20
2 8 14
3 9 15

The following code will do the job:

>>> from pyexcel.cookbook import merge_two_readers
>>> sheet1 = pyexcel.get_sheet(file_name="example.csv", name_columns_by_row=0)
>>> sheet2 = pyexcel.get_sheet(file_name="example.xls", name_columns_by_row=0)
>>> del sheet1.column[1, 3, 5]
>>> del sheet2.column[0, 1]
>>> merge_two_readers(sheet1, sheet2, "output.xls")

Merge two files into a book where each file become a sheet

Suppose you want to merge the following two data files:

example.csv

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

example.xls

Column 4 Column 5
10 12
11 13

>>> data = [
... ["Column 1", "Column 2", "Column 3"],
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]
...]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.csv")
>>> data = [
... ["Column 4", "Column 5"],
... [10, 12],
... [11, 13]
...]
>>> s = pyexcel.Sheet(data)
>>> s.save_as("example.xls")

The following code will merge the tow into one file, say “output.xls”:

2.8. Cook book 83

pyexcel, Release 0.7.3

>>> from pyexcel.cookbook import merge_all_to_a_book
>>> merge_all_to_a_book(["example.csv", "example.xls"], "output.xls")

The output.xls would have the following data:

example.csv as sheet name and inside the sheet, you have:

Column 1 Column 2 Column 3
1 4 7
2 5 8
3 6 9

example.ods as sheet name and inside the sheet, you have:

Column 4 Column 5
10 12
11 13

Merge all excel files in directory into a book where each file become a sheet

The following code will merge every excel files into one file, say “output.xls”:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book(glob.glob("your_csv_directory*.csv"), "output.xls")

You can mix and match with other excel formats: xls, xlsm and ods. For example, if you are sure you have only xls,
xlsm, xlsx, ods and csv files in your_excel_file_directory, you can do the following:

from pyexcel.cookbook import merge_all_to_a_book
import glob

merge_all_to_a_book(glob.glob("your_excel_file_directory*.*"), "output.xls")

Split a book into single sheet files

Suppose you have many sheets in a work book and you would like to separate each into a single sheet excel file. You
can easily do this:

>>> from pyexcel.cookbook import split_a_book
>>> split_a_book("megabook.xls", "output.xls")
>>> import glob
>>> outputfiles = glob.glob("*_output.xls")
>>> for file in sorted(outputfiles):
... print(file)
...
Sheet 1_output.xls
Sheet 2_output.xls
Sheet 3_output.xls

84 Chapter 2. Support the project

pyexcel, Release 0.7.3

for the output file, you can specify any of the supported formats

Extract just one sheet from a book

Suppose you just want to extract one sheet from many sheets that exists in a work book and you would like to separate
it into a single sheet excel file. You can easily do this:

>>> from pyexcel.cookbook import extract_a_sheet_from_a_book
>>> extract_a_sheet_from_a_book("megabook.xls", "Sheet 1", "output.xls")
>>> if os.path.exists("Sheet 1_output.xls"):
... print("Sheet 1_output.xls exists")
...
Sheet 1_output.xls exists

for the output file, you can specify any of the supported formats

2.8.2 Loading from other sources
Get back into pyexcel

list

>>> import pyexcel as p
>>> two_dimensional_list = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
...]
>>> sheet = p.get_sheet(array=two_dimensional_list)
>>> sheet
pyexcel_sheet1:
+---+----+----+----+
| 1 | 2 | 3 | 4 |
+---+----+----+----+
| 5 | 6 | 7 | 8 |
+---+----+----+----+
| 9 | 10 | 11 | 12 |
+---+----+----+----+

dict

>>> a_dictionary_of_key_value_pair = {
... "IE": 0.2,
... "Firefox": 0.3
... }
>>> sheet = p.get_sheet(adict=a_dictionary_of_key_value_pair)
>>> sheet
pyexcel_sheet1:
+---------+-----+
| Firefox | IE |
+---------+-----+
| 0.3 | 0.2 |
+---------+-----+

2.8. Cook book 85

pyexcel, Release 0.7.3

>>> a_dictionary_of_one_dimensional_arrays = {
... "Column 1": [1, 2, 3, 4],
... "Column 2": [5, 6, 7, 8],
... "Column 3": [9, 10, 11, 12],
... }
>>> sheet = p.get_sheet(adict=a_dictionary_of_one_dimensional_arrays)
>>> sheet
pyexcel_sheet1:
+----------+----------+----------+
| Column 1 | Column 2 | Column 3 |
+----------+----------+----------+
| 1 | 5 | 9 |
+----------+----------+----------+
| 2 | 6 | 10 |
+----------+----------+----------+
| 3 | 7 | 11 |
+----------+----------+----------+
| 4 | 8 | 12 |
+----------+----------+----------+

records

>>> a_list_of_dictionaries = [
... {
... "Name": 'Adam',
... "Age": 28
... },
... {
... "Name": 'Beatrice',
... "Age": 29
... },
... {
... "Name": 'Ceri',
... "Age": 30
... },
... {
... "Name": 'Dean',
... "Age": 26
... }
...]
>>> sheet = p.get_sheet(records=a_list_of_dictionaries)
>>> sheet
pyexcel_sheet1:
+-----+----------+
| Age | Name |
+-----+----------+
| 28 | Adam |
+-----+----------+
| 29 | Beatrice |
+-----+----------+
| 30 | Ceri |
+-----+----------+

(continues on next page)

86 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

| 26 | Dean |
+-----+----------+

book dict

>>> a_dictionary_of_two_dimensional_arrays = {
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...],
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...],
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... }
>>> book = p.get_book(bookdict=a_dictionary_of_two_dimensional_arrays)
>>> book
Sheet 1:
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
| 7.0 | 8.0 | 9.0 |
+-----+-----+-----+
Sheet 2:
+-----+-----+-----+
| X | Y | Z |
+-----+-----+-----+
| 1.0 | 2.0 | 3.0 |
+-----+-----+-----+
| 4.0 | 5.0 | 6.0 |
+-----+-----+-----+
Sheet 3:
+-----+-----+-----+
| O | P | Q |
+-----+-----+-----+
| 3.0 | 2.0 | 1.0 |
+-----+-----+-----+
| 4.0 | 3.0 | 2.0 |
+-----+-----+-----+

2.8. Cook book 87

pyexcel, Release 0.7.3

How to load a sheet from a url

Suppose you have excel file somewhere hosted:

>>> sheet = pe.get_sheet(url='http://yourdomain.com/test.csv')
>>> sheet
csv:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+

For sheet

Get content

>>> another_sheet = p.Sheet()
>>> another_sheet.url = "https://github.com/pyexcel/pyexcel/raw/master/examples/basics/
→˓multiple-sheets-example.xls"
>>> another_sheet.content
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

For book

How about setting content via a url?

>>> another_book = p.Book()
>>> another_book.url = "https://github.com/pyexcel/pyexcel/raw/master/examples/basics/
→˓multiple-sheets-example.xls"
>>> another_book
Sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
Sheet 2:
+---+---+---+
| X | Y | Z |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
Sheet 3:
+---+---+---+

(continues on next page)

88 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

| O | P | Q |
+---+---+---+
| 3 | 2 | 1 |
+---+---+---+
| 4 | 3 | 2 |
+---+---+---+

2.9 Real world cases

2.9.1 Questions and Answers
1. Python flask writing to a csv file and reading it

2. PyQt: Import .xls file and populate QTableWidget?

3. How do I write data to csv file in columns and rows from a list in python?

4. How to write dictionary values to a csv file using Python

5. Python convert csv to xlsx

6. How to read data from excel and set data type

7. Remove or keep specific columns in csv file

8. How can I put a CSV file in an array?

2.9.2 How to inject csv data to database
Here is real case in the stack-overflow. Due to the author’s ignorance, the user would like to have the code in matlab
than Python. Hence, I am sharing my pyexcel solution here.

Problem definition

Here is my CSV file:

PDB_Id 123442 234335 234336 3549867
a001 6 0 0 8
b001 4 2 0 0
c003 0 0 0 5

I want to put this data in a MYSQL table in the form:

PROTEIN_ID PROTEIN_KEY VALUE_OF_KEY
a001 123442 6
a001 234335 0
a001 234336 0
a001 3549867 8
b001 123442 4
b001 234335 2
b001 234336 0
b001 234336 0
c003 123442 0
c003 234335 0
c003 234336 0
c003 3549867 5

2.9. Real world cases 89

http://stackoverflow.com/questions/27338891/python-flask-writing-to-a-csv-file-and-reading-it#27348717
http://stackoverflow.com/questions/11817161/pyqt-import-xls-file-and-populate-qtablewidget#25910499
http://stackoverflow.com/questions/7528801/how-do-i-write-data-to-csv-file-in-columns-and-rows-from-a-list-in-python/27108294#27108294
http://stackoverflow.com/questions/26901570/how-to-write-dictionary-values-to-a-csv-file-using-python/26950398#26950398
http://stackoverflow.com/questions/17684610/python-convert-csv-to-xlsx/26456641#26456641
http://stackoverflow.com/questions/26953628/how-to-read-data-from-excel-and-set-data-type/27138572#27138572
http://stackoverflow.com/questions/27342590/remove-or-keep-specific-columns-in-csv-file/27348897#27348897
http://stackoverflow.com/questions/27318907/how-can-i-put-a-csv-file-in-an-array/27348806#27348806
http://stackoverflow.com/questions/43837878/csv-to-mysql-in-matlab-code

pyexcel, Release 0.7.3

I have created table with the following code:

sql = """CREATE TABLE ALLPROTEINS (
Protein_ID CHAR(20),
PROTEIN_KEY INT ,
VALUE_OF_KEY INT
)"""

I need the code for insert.

Pyexcel solution

If you could insert an id field to act as the primary key, it can be mapped using sqlalchemy’s ORM:

$ sqlite3 /tmp/stack2.db
sqlite> CREATE TABLE ALLPROTEINS (

...> ID INT,

...> Protein_ID CHAR(20),

...> PROTEIN_KEY INT,

...> VALUE_OF_KEY INT

...>);

Here is the data mapping script vis sqlalchemy:

>>> # mapping your database via sqlalchemy
>>> from sqlalchemy import create_engine
>>> from sqlalchemy.ext.declarative import declarative_base
>>> from sqlalchemy import Column, Integer, String
>>> from sqlalchemy.orm import sessionmaker
>>> # checkout http://docs.sqlalchemy.org/en/latest/dialects/index.html
>>> # for a different database server
>>> engine = create_engine("sqlite:////tmp/stack2.db")
>>> Base = declarative_base()
>>> class Proteins(Base):
... __tablename__ = 'ALLPROTEINS'
... id = Column(Integer, primary_key=True, autoincrement=True) # <-- appended field
... protein_id = Column(String(20))
... protein_key = Column(Integer)
... value_of_key = Column(Integer)
>>> Session = sessionmaker(bind=engine)
>>>

Here is the short script to get data inserted into the database:

>>> import pyexcel as p
>>> from itertools import product
>>> # data insertion code starts here
>>> sheet = p.get_sheet(file_name="csv-to-mysql-in-matlab-code.csv", delimiter='\t')
>>> sheet.name_columns_by_row(0)
>>> sheet.name_rows_by_column(0)
>>> print(sheet)
csv-to-mysql-in-matlab-code.csv:
+------+--------+--------+--------+---------+
| | 123442 | 234335 | 234336 | 3549867 |

(continues on next page)

90 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

+======+========+========+========+=========+
| a001 | 6 | 0 | 0 | 8 |
+------+--------+--------+--------+---------+
| b001 | 4 | 2 | 0 | 0 |
+------+--------+--------+--------+---------+
| c003 | 0 | 0 | 0 | 5 |
+------+--------+--------+--------+---------+
>>> results = []
>>> for protein_id, protein_key in product(sheet.rownames, sheet.colnames):
... results.append([protein_id, protein_key, sheet[str(protein_id), protein_key]])
>>>
>>> sheet2 = p.get_sheet(array=results)
>>> sheet2.colnames = ['protein_id', 'protein_key', 'value_of_key']
>>> print(sheet2)
pyexcel_sheet1:
+------------+-------------+--------------+
| protein_id | protein_key | value_of_key |
+============+=============+==============+
| a001 | 123442 | 6 |
+------------+-------------+--------------+
| a001 | 234335 | 0 |
+------------+-------------+--------------+
| a001 | 234336 | 0 |
+------------+-------------+--------------+
| a001 | 3549867 | 8 |
+------------+-------------+--------------+
| b001 | 123442 | 4 |
+------------+-------------+--------------+
| b001 | 234335 | 2 |
+------------+-------------+--------------+
| b001 | 234336 | 0 |
+------------+-------------+--------------+
| b001 | 3549867 | 0 |
+------------+-------------+--------------+
| c003 | 123442 | 0 |
+------------+-------------+--------------+
| c003 | 234335 | 0 |
+------------+-------------+--------------+
| c003 | 234336 | 0 |
+------------+-------------+--------------+
| c003 | 3549867 | 5 |
+------------+-------------+--------------+
>>> sheet2.save_to_database(session=Session(), table=Proteins)

Here is the data inserted:

$ sqlite3 /tmp/stack2.db
sqlite> select * from allproteins

...> ;
|a001|123442|6
|a001|234335|0
|a001|234336|0

(continues on next page)

2.9. Real world cases 91

pyexcel, Release 0.7.3

(continued from previous page)

|a001|3549867|8
|b001|123442|4
|b001|234335|2
|b001|234336|0
|b001|234336|0
|c003|123442|0
|c003|234335|0
|c003|234336|0
|c003|3549867|5

2.10 API documentation

2.10.1 API Reference
This is intended for users of pyexcel.

Signature functions

Obtaining data from excel file

get_array(**keywords) Obtain an array from an excel source
get_dict([name_columns_by_row]) Obtain a dictionary from an excel source
get_records([name_columns_by_row]) Obtain a list of records from an excel source
get_book_dict(**keywords) Obtain a dictionary of two dimensional arrays
get_book(**keywords) Get an instance of Book from an excel source
get_sheet(**keywords) Get an instance of Sheet from an excel source
iget_book(**keywords) Get an instance of BookStream from an excel source
iget_array(**keywords) Obtain a generator of an two dimensional array from an

excel source
iget_records([custom_headers]) Obtain a generator of a list of records from an excel

source
free_resources() Close file handles opened by signature functions that

starts with 'i'

pyexcel.get_array

pyexcel.get_array(**keywords)
Obtain an array from an excel source

It accepts the same parameters as get_sheet() but return an array instead.

Not all parameters are needed. Here is a table

92 Chapter 2. Support the project

pyexcel, Release 0.7.3

source parameters
loading from file file_name, sheet_name, keywords
loading from string file_content, file_type, sheet_name, keywords
loading from stream file_stream, file_type, sheet_name, keywords
loading from sql session, table
loading from sql in django model
loading from query sets any query sets(sqlalchemy or django)
loading from dictionary adict, with_keys
loading from records records
loading from array array
loading from an url url

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

table :
database table

model:
a django model

adict:
a dictionary of one dimensional arrays

url :
a download http url for your excel file

with_keys :
load with previous dictionary’s keys, default is True

records :
a list of dictionaries that have the same keys

array :
a two dimensional array, a list of lists

sheet_name :
sheet name. if sheet_name is not given, the default sheet at index 0 is loaded

start_row
[int] defaults to 0. It allows you to skip rows at the begginning

row_limit: int
defaults to -1, meaning till the end of the whole sheet. It allows you to skip the tailing rows.

2.10. API documentation 93

pyexcel, Release 0.7.3

start_column
[int] defaults to 0. It allows you to skip columns on your left hand side

column_limit: int
defaults to -1, meaning till the end of the columns. It allows you to skip the tailing columns.

skip_row_func:
It allows you to write your own row skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_column_func:
It allows you to write your own column skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_empty_rows: bool
Defaults to False. Toggle it to True if the rest of empty rows are useless, but it does affect the number of
rows.

row_renderer:
You could choose to write a custom row renderer when the data is being read.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,

94 Chapter 2. Support the project

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

Parameters related to xls file format:
Please note the following parameters apply to pyexcel-xls. more details can be found in xlrd.
open_workbook()

logfile:
An open file to which messages and diagnostics are written.

verbosity:
Increases the volume of trace material written to the logfile.

use_mmap:
Whether to use the mmap module is determined heuristically. Use this arg to override the result.

Current heuristic: mmap is used if it exists.

encoding_override:
Used to overcome missing or bad codepage information in older-version files.

formatting_info:
The default is False, which saves memory.

When True, formatting information will be read from the spreadsheet file. This provides all cells, including
empty and blank cells. Formatting information is available for each cell.

ragged_rows:
The default of False means all rows are padded out with empty cells so that all rows have the same size as
found in ncols.

True means that there are no empty cells at the ends of rows. This can result in substantial memory savings
if rows are of widely varying sizes. See also the row_len() method.

pyexcel.get_dict

pyexcel.get_dict(name_columns_by_row=0, **keywords)
Obtain a dictionary from an excel source

It accepts the same parameters as get_sheet() but return a dictionary instead.

Specifically: name_columns_by_row : specify a row to be a dictionary key. It is default to 0 or first row.

If you would use a column index 0 instead, you should do:

2.10. API documentation 95

https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook
https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook

pyexcel, Release 0.7.3

get_dict(name_columns_by_row=-1, name_rows_by_column=0)

Examples on start_row, start_column
Let’s assume the following file is a huge csv file:

>>> import datetime
>>> import pyexcel as pe
>>> data = [
... [1, 21, 31],
... [2, 22, 32],
... [3, 23, 33],
... [4, 24, 34],
... [5, 25, 35],
... [6, 26, 36]
...]
>>> pe.save_as(array=data, dest_file_name="your_file.csv")

And let’s pretend to read partial data:

>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3)
your_file.csv:
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

And you could as well do the same for columns:

>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 21 | 31 |
+----+----+
| 22 | 32 |
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+
| 26 | 36 |
+----+----+

Obvious, you could do both at the same time:

>>> pe.get_sheet(file_name="your_file.csv",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
your_file.csv:

(continues on next page)

96 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+

The pagination support is available across all pyexcel plugins.

ò Note

No column pagination support for query sets as data source.

Formatting while transcoding a big data file

If you are transcoding a big data set, conventional formatting method would not help unless a on-demand free
RAM is available. However, there is a way to minimize the memory footprint of pyexcel while the formatting is
performed.

Let’s continue from previous example. Suppose we want to transcode “your_file.csv” to “your_file.xls” but
increase each element by 1.

What we can do is to define a row renderer function as the following:

>>> def increment_by_one(row):
... for element in row:
... yield element + 1

Then pass it onto save_as function using row_renderer:

>>> pe.isave_as(file_name="your_file.csv",
... row_renderer=increment_by_one,
... dest_file_name="your_file.xlsx")

ò Note

If the data content is from a generator, isave_as has to be used.

We can verify if it was done correctly:

>>> pe.get_sheet(file_name="your_file.xlsx")
your_file.csv:
+---+----+----+
| 2 | 22 | 32 |
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

(continues on next page)

2.10. API documentation 97

pyexcel, Release 0.7.3

(continued from previous page)

| 6 | 26 | 36 |
+---+----+----+
| 7 | 27 | 37 |
+---+----+----+

Not all parameters are needed. Here is a table

source parameters
loading from file file_name, sheet_name, keywords
loading from string file_content, file_type, sheet_name, keywords
loading from stream file_stream, file_type, sheet_name, keywords
loading from sql session, table
loading from sql in django model
loading from query sets any query sets(sqlalchemy or django)
loading from dictionary adict, with_keys
loading from records records
loading from array array
loading from an url url

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

table :
database table

model:
a django model

adict:
a dictionary of one dimensional arrays

url :
a download http url for your excel file

with_keys :
load with previous dictionary’s keys, default is True

records :
a list of dictionaries that have the same keys

array :
a two dimensional array, a list of lists

98 Chapter 2. Support the project

pyexcel, Release 0.7.3

sheet_name :
sheet name. if sheet_name is not given, the default sheet at index 0 is loaded

start_row
[int] defaults to 0. It allows you to skip rows at the begginning

row_limit: int
defaults to -1, meaning till the end of the whole sheet. It allows you to skip the tailing rows.

start_column
[int] defaults to 0. It allows you to skip columns on your left hand side

column_limit: int
defaults to -1, meaning till the end of the columns. It allows you to skip the tailing columns.

skip_row_func:
It allows you to write your own row skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_column_func:
It allows you to write your own column skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_empty_rows: bool
Defaults to False. Toggle it to True if the rest of empty rows are useless, but it does affect the number of
rows.

row_renderer:
You could choose to write a custom row renderer when the data is being read.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

2.10. API documentation 99

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,
encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

Parameters related to xls file format:
Please note the following parameters apply to pyexcel-xls. more details can be found in xlrd.
open_workbook()

logfile:
An open file to which messages and diagnostics are written.

verbosity:
Increases the volume of trace material written to the logfile.

use_mmap:
Whether to use the mmap module is determined heuristically. Use this arg to override the result.

Current heuristic: mmap is used if it exists.

encoding_override:
Used to overcome missing or bad codepage information in older-version files.

formatting_info:
The default is False, which saves memory.

When True, formatting information will be read from the spreadsheet file. This provides all cells, including
empty and blank cells. Formatting information is available for each cell.

ragged_rows:
The default of False means all rows are padded out with empty cells so that all rows have the same size as
found in ncols.

True means that there are no empty cells at the ends of rows. This can result in substantial memory savings
if rows are of widely varying sizes. See also the row_len() method.

100 Chapter 2. Support the project

https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook
https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook

pyexcel, Release 0.7.3

pyexcel.get_records

pyexcel.get_records(name_columns_by_row=0, **keywords)
Obtain a list of records from an excel source

It accepts the same parameters as get_sheet() but return a list of dictionary(records) instead.

Specifically: name_columns_by_row : specify a row to be a dictionary key. It is default to 0 or first row.

If you would use a column index 0 instead, you should do:

get_records(name_columns_by_row=-1, name_rows_by_column=0)

Examples on start_row, start_column
Let’s assume the following file is a huge csv file:

>>> import datetime
>>> import pyexcel as pe
>>> data = [
... [1, 21, 31],
... [2, 22, 32],
... [3, 23, 33],
... [4, 24, 34],
... [5, 25, 35],
... [6, 26, 36]
...]
>>> pe.save_as(array=data, dest_file_name="your_file.csv")

And let’s pretend to read partial data:

>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3)
your_file.csv:
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

And you could as well do the same for columns:

>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 21 | 31 |
+----+----+
| 22 | 32 |
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+

(continues on next page)

2.10. API documentation 101

pyexcel, Release 0.7.3

(continued from previous page)

| 26 | 36 |
+----+----+

Obvious, you could do both at the same time:

>>> pe.get_sheet(file_name="your_file.csv",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+

The pagination support is available across all pyexcel plugins.

ò Note

No column pagination support for query sets as data source.

Formatting while transcoding a big data file

If you are transcoding a big data set, conventional formatting method would not help unless a on-demand free
RAM is available. However, there is a way to minimize the memory footprint of pyexcel while the formatting is
performed.

Let’s continue from previous example. Suppose we want to transcode “your_file.csv” to “your_file.xls” but
increase each element by 1.

What we can do is to define a row renderer function as the following:

>>> def increment_by_one(row):
... for element in row:
... yield element + 1

Then pass it onto save_as function using row_renderer:

>>> pe.isave_as(file_name="your_file.csv",
... row_renderer=increment_by_one,
... dest_file_name="your_file.xlsx")

ò Note

If the data content is from a generator, isave_as has to be used.

We can verify if it was done correctly:

>>> pe.get_sheet(file_name="your_file.xlsx")
your_file.csv:

(continues on next page)

102 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

+---+----+----+
| 2 | 22 | 32 |
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+
| 6 | 26 | 36 |
+---+----+----+
| 7 | 27 | 37 |
+---+----+----+

Not all parameters are needed. Here is a table

source parameters
loading from file file_name, sheet_name, keywords
loading from string file_content, file_type, sheet_name, keywords
loading from stream file_stream, file_type, sheet_name, keywords
loading from sql session, table
loading from sql in django model
loading from query sets any query sets(sqlalchemy or django)
loading from dictionary adict, with_keys
loading from records records
loading from array array
loading from an url url

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

table :
database table

model:
a django model

adict:
a dictionary of one dimensional arrays

url :
a download http url for your excel file

2.10. API documentation 103

pyexcel, Release 0.7.3

with_keys :
load with previous dictionary’s keys, default is True

records :
a list of dictionaries that have the same keys

array :
a two dimensional array, a list of lists

sheet_name :
sheet name. if sheet_name is not given, the default sheet at index 0 is loaded

start_row
[int] defaults to 0. It allows you to skip rows at the begginning

row_limit: int
defaults to -1, meaning till the end of the whole sheet. It allows you to skip the tailing rows.

start_column
[int] defaults to 0. It allows you to skip columns on your left hand side

column_limit: int
defaults to -1, meaning till the end of the columns. It allows you to skip the tailing columns.

skip_row_func:
It allows you to write your own row skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_column_func:
It allows you to write your own column skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_empty_rows: bool
Defaults to False. Toggle it to True if the rest of empty rows are useless, but it does affect the number of
rows.

row_renderer:
You could choose to write a custom row renderer when the data is being read.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

104 Chapter 2. Support the project

pyexcel, Release 0.7.3

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,
encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

Parameters related to xls file format:
Please note the following parameters apply to pyexcel-xls. more details can be found in xlrd.
open_workbook()

logfile:
An open file to which messages and diagnostics are written.

verbosity:
Increases the volume of trace material written to the logfile.

use_mmap:
Whether to use the mmap module is determined heuristically. Use this arg to override the result.

Current heuristic: mmap is used if it exists.

encoding_override:
Used to overcome missing or bad codepage information in older-version files.

formatting_info:
The default is False, which saves memory.

When True, formatting information will be read from the spreadsheet file. This provides all cells, including
empty and blank cells. Formatting information is available for each cell.

2.10. API documentation 105

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters
https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook
https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook

pyexcel, Release 0.7.3

ragged_rows:
The default of False means all rows are padded out with empty cells so that all rows have the same size as
found in ncols.

True means that there are no empty cells at the ends of rows. This can result in substantial memory savings
if rows are of widely varying sizes. See also the row_len() method.

pyexcel.get_book_dict

pyexcel.get_book_dict(**keywords)
Obtain a dictionary of two dimensional arrays

It accepts the same parameters as get_book() but return a dictionary instead.

Here is a table of parameters:

source parameters
loading from file file_name, keywords
loading from string file_content, file_type, keywords
loading from stream file_stream, file_type, keywords
loading from sql session, tables
loading from django models models
loading from dictionary bookdict
loading from an url url

Where the dictionary should have text as keys and two dimensional array as values.

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

tables :
a list of database table

models :
a list of django models

bookdict :
a dictionary of two dimensional arrays

url :
a download http url for your excel file

sheets:
a list of mixed sheet names and sheet indices to be read. This is done to keep Pandas compactibility. With

106 Chapter 2. Support the project

pyexcel, Release 0.7.3

this parameter, more than one sheet can be read and you have the control to read the sheets of your interest
instead of all available sheets.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,
encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

2.10. API documentation 107

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

pyexcel.get_book

pyexcel.get_book(**keywords)
Get an instance of Book from an excel source

Here is a table of parameters:

source parameters
loading from file file_name, keywords
loading from string file_content, file_type, keywords
loading from stream file_stream, file_type, keywords
loading from sql session, tables
loading from django models models
loading from dictionary bookdict
loading from an url url

Where the dictionary should have text as keys and two dimensional array as values.

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

tables :
a list of database table

models :
a list of django models

bookdict :
a dictionary of two dimensional arrays

url :
a download http url for your excel file

sheets:
a list of mixed sheet names and sheet indices to be read. This is done to keep Pandas compactibility. With
this parameter, more than one sheet can be read and you have the control to read the sheets of your interest
instead of all available sheets.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

108 Chapter 2. Support the project

pyexcel, Release 0.7.3

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,
encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

pyexcel.get_sheet

pyexcel.get_sheet(**keywords)
Get an instance of Sheet from an excel source

Examples on start_row, start_column
Let’s assume the following file is a huge csv file:

>>> import datetime
>>> import pyexcel as pe
>>> data = [
... [1, 21, 31],

(continues on next page)

2.10. API documentation 109

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

(continued from previous page)

... [2, 22, 32],

... [3, 23, 33],

... [4, 24, 34],

... [5, 25, 35],

... [6, 26, 36]

...]
>>> pe.save_as(array=data, dest_file_name="your_file.csv")

And let’s pretend to read partial data:

>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3)
your_file.csv:
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

And you could as well do the same for columns:

>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 21 | 31 |
+----+----+
| 22 | 32 |
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+
| 26 | 36 |
+----+----+

Obvious, you could do both at the same time:

>>> pe.get_sheet(file_name="your_file.csv",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+

The pagination support is available across all pyexcel plugins.

110 Chapter 2. Support the project

pyexcel, Release 0.7.3

ò Note

No column pagination support for query sets as data source.

Formatting while transcoding a big data file

If you are transcoding a big data set, conventional formatting method would not help unless a on-demand free
RAM is available. However, there is a way to minimize the memory footprint of pyexcel while the formatting is
performed.

Let’s continue from previous example. Suppose we want to transcode “your_file.csv” to “your_file.xls” but
increase each element by 1.

What we can do is to define a row renderer function as the following:

>>> def increment_by_one(row):
... for element in row:
... yield element + 1

Then pass it onto save_as function using row_renderer:

>>> pe.isave_as(file_name="your_file.csv",
... row_renderer=increment_by_one,
... dest_file_name="your_file.xlsx")

ò Note

If the data content is from a generator, isave_as has to be used.

We can verify if it was done correctly:

>>> pe.get_sheet(file_name="your_file.xlsx")
your_file.csv:
+---+----+----+
| 2 | 22 | 32 |
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+
| 6 | 26 | 36 |
+---+----+----+
| 7 | 27 | 37 |
+---+----+----+

Not all parameters are needed. Here is a table

2.10. API documentation 111

pyexcel, Release 0.7.3

source parameters
loading from file file_name, sheet_name, keywords
loading from string file_content, file_type, sheet_name, keywords
loading from stream file_stream, file_type, sheet_name, keywords
loading from sql session, table
loading from sql in django model
loading from query sets any query sets(sqlalchemy or django)
loading from dictionary adict, with_keys
loading from records records
loading from array array
loading from an url url

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

table :
database table

model:
a django model

adict:
a dictionary of one dimensional arrays

url :
a download http url for your excel file

with_keys :
load with previous dictionary’s keys, default is True

records :
a list of dictionaries that have the same keys

array :
a two dimensional array, a list of lists

sheet_name :
sheet name. if sheet_name is not given, the default sheet at index 0 is loaded

start_row
[int] defaults to 0. It allows you to skip rows at the begginning

row_limit: int
defaults to -1, meaning till the end of the whole sheet. It allows you to skip the tailing rows.

112 Chapter 2. Support the project

pyexcel, Release 0.7.3

start_column
[int] defaults to 0. It allows you to skip columns on your left hand side

column_limit: int
defaults to -1, meaning till the end of the columns. It allows you to skip the tailing columns.

skip_row_func:
It allows you to write your own row skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_column_func:
It allows you to write your own column skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_empty_rows: bool
Defaults to False. Toggle it to True if the rest of empty rows are useless, but it does affect the number of
rows.

row_renderer:
You could choose to write a custom row renderer when the data is being read.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,

2.10. API documentation 113

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

Parameters related to xls file format:
Please note the following parameters apply to pyexcel-xls. more details can be found in xlrd.
open_workbook()

logfile:
An open file to which messages and diagnostics are written.

verbosity:
Increases the volume of trace material written to the logfile.

use_mmap:
Whether to use the mmap module is determined heuristically. Use this arg to override the result.

Current heuristic: mmap is used if it exists.

encoding_override:
Used to overcome missing or bad codepage information in older-version files.

formatting_info:
The default is False, which saves memory.

When True, formatting information will be read from the spreadsheet file. This provides all cells, including
empty and blank cells. Formatting information is available for each cell.

ragged_rows:
The default of False means all rows are padded out with empty cells so that all rows have the same size as
found in ncols.

True means that there are no empty cells at the ends of rows. This can result in substantial memory savings
if rows are of widely varying sizes. See also the row_len() method.

pyexcel.iget_book

pyexcel.iget_book(**keywords)
Get an instance of BookStream from an excel source

First use case is to get all sheet names without extracting the sheets into memory.

Here is a table of parameters:

114 Chapter 2. Support the project

https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook
https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook

pyexcel, Release 0.7.3

source parameters
loading from file file_name, keywords
loading from string file_content, file_type, keywords
loading from stream file_stream, file_type, keywords
loading from sql session, tables
loading from django models models
loading from dictionary bookdict
loading from an url url

Where the dictionary should have text as keys and two dimensional array as values.

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

tables :
a list of database table

models :
a list of django models

bookdict :
a dictionary of two dimensional arrays

url :
a download http url for your excel file

sheets:
a list of mixed sheet names and sheet indices to be read. This is done to keep Pandas compactibility. With
this parameter, more than one sheet can be read and you have the control to read the sheets of your interest
instead of all available sheets.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

2.10. API documentation 115

pyexcel, Release 0.7.3

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,
encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

When you use this function to work on physical files, this function will leave its file handle open. When you
finish the operation on its data, you need to call pyexcel.free_resources() to close file hande(s).

for csv, csvz file formats, file handles will be left open. for xls, ods file formats, the file is read all into memory
and is close afterwards. for xlsx, file handles will be left open in python 2.7 - 3.5 by pyexcel-xlsx(openpyxl). In
other words, pyexcel-xls, pyexcel-ods, pyexcel-ods3 won’t leak file handles.

pyexcel.iget_array

pyexcel.iget_array(**keywords)
Obtain a generator of an two dimensional array from an excel source

It is similiar to pyexcel.get_array() but it has less memory footprint.

Not all parameters are needed. Here is a table

116 Chapter 2. Support the project

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

source parameters
loading from file file_name, sheet_name, keywords
loading from string file_content, file_type, sheet_name, keywords
loading from stream file_stream, file_type, sheet_name, keywords
loading from sql session, table
loading from sql in django model
loading from query sets any query sets(sqlalchemy or django)
loading from dictionary adict, with_keys
loading from records records
loading from array array
loading from an url url

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

table :
database table

model:
a django model

adict:
a dictionary of one dimensional arrays

url :
a download http url for your excel file

with_keys :
load with previous dictionary’s keys, default is True

records :
a list of dictionaries that have the same keys

array :
a two dimensional array, a list of lists

sheet_name :
sheet name. if sheet_name is not given, the default sheet at index 0 is loaded

start_row
[int] defaults to 0. It allows you to skip rows at the begginning

row_limit: int
defaults to -1, meaning till the end of the whole sheet. It allows you to skip the tailing rows.

2.10. API documentation 117

pyexcel, Release 0.7.3

start_column
[int] defaults to 0. It allows you to skip columns on your left hand side

column_limit: int
defaults to -1, meaning till the end of the columns. It allows you to skip the tailing columns.

skip_row_func:
It allows you to write your own row skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_column_func:
It allows you to write your own column skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_empty_rows: bool
Defaults to False. Toggle it to True if the rest of empty rows are useless, but it does affect the number of
rows.

row_renderer:
You could choose to write a custom row renderer when the data is being read.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,

118 Chapter 2. Support the project

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

Parameters related to xls file format:
Please note the following parameters apply to pyexcel-xls. more details can be found in xlrd.
open_workbook()

logfile:
An open file to which messages and diagnostics are written.

verbosity:
Increases the volume of trace material written to the logfile.

use_mmap:
Whether to use the mmap module is determined heuristically. Use this arg to override the result.

Current heuristic: mmap is used if it exists.

encoding_override:
Used to overcome missing or bad codepage information in older-version files.

formatting_info:
The default is False, which saves memory.

When True, formatting information will be read from the spreadsheet file. This provides all cells, including
empty and blank cells. Formatting information is available for each cell.

ragged_rows:
The default of False means all rows are padded out with empty cells so that all rows have the same size as
found in ncols.

True means that there are no empty cells at the ends of rows. This can result in substantial memory savings
if rows are of widely varying sizes. See also the row_len() method.

When you use this function to work on physical files, this function will leave its file handle open. When you
finish the operation on its data, you need to call pyexcel.free_resources() to close file hande(s).

for csv, csvz file formats, file handles will be left open. for xls, ods file formats, the file is read all into memory
and is close afterwards. for xlsx, file handles will be left open in python 2.7 - 3.5 by pyexcel-xlsx(openpyxl). In
other words, pyexcel-xls, pyexcel-ods, pyexcel-ods3 won’t leak file handles.

2.10. API documentation 119

https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook
https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook

pyexcel, Release 0.7.3

pyexcel.iget_records

pyexcel.iget_records(custom_headers=None, **keywords)
Obtain a generator of a list of records from an excel source

It is similiar to pyexcel.get_records() but it has less memory footprint but requires the headers to be in the
first row. And the data matrix should be of equal length. It should consume less memory and should work well
with large files.

Examples on start_row, start_column
Let’s assume the following file is a huge csv file:

>>> import datetime
>>> import pyexcel as pe
>>> data = [
... [1, 21, 31],
... [2, 22, 32],
... [3, 23, 33],
... [4, 24, 34],
... [5, 25, 35],
... [6, 26, 36]
...]
>>> pe.save_as(array=data, dest_file_name="your_file.csv")

And let’s pretend to read partial data:

>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3)
your_file.csv:
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

And you could as well do the same for columns:

>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 21 | 31 |
+----+----+
| 22 | 32 |
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+
| 26 | 36 |
+----+----+

Obvious, you could do both at the same time:

120 Chapter 2. Support the project

pyexcel, Release 0.7.3

>>> pe.get_sheet(file_name="your_file.csv",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+

The pagination support is available across all pyexcel plugins.

ò Note

No column pagination support for query sets as data source.

Formatting while transcoding a big data file

If you are transcoding a big data set, conventional formatting method would not help unless a on-demand free
RAM is available. However, there is a way to minimize the memory footprint of pyexcel while the formatting is
performed.

Let’s continue from previous example. Suppose we want to transcode “your_file.csv” to “your_file.xls” but
increase each element by 1.

What we can do is to define a row renderer function as the following:

>>> def increment_by_one(row):
... for element in row:
... yield element + 1

Then pass it onto save_as function using row_renderer:

>>> pe.isave_as(file_name="your_file.csv",
... row_renderer=increment_by_one,
... dest_file_name="your_file.xlsx")

ò Note

If the data content is from a generator, isave_as has to be used.

We can verify if it was done correctly:

>>> pe.get_sheet(file_name="your_file.xlsx")
your_file.csv:
+---+----+----+
| 2 | 22 | 32 |
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+

(continues on next page)

2.10. API documentation 121

pyexcel, Release 0.7.3

(continued from previous page)

| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+
| 6 | 26 | 36 |
+---+----+----+
| 7 | 27 | 37 |
+---+----+----+

Not all parameters are needed. Here is a table

source parameters
loading from file file_name, sheet_name, keywords
loading from string file_content, file_type, sheet_name, keywords
loading from stream file_stream, file_type, sheet_name, keywords
loading from sql session, table
loading from sql in django model
loading from query sets any query sets(sqlalchemy or django)
loading from dictionary adict, with_keys
loading from records records
loading from array array
loading from an url url

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

table :
database table

model:
a django model

adict:
a dictionary of one dimensional arrays

url :
a download http url for your excel file

with_keys :
load with previous dictionary’s keys, default is True

records :
a list of dictionaries that have the same keys

122 Chapter 2. Support the project

pyexcel, Release 0.7.3

array :
a two dimensional array, a list of lists

sheet_name :
sheet name. if sheet_name is not given, the default sheet at index 0 is loaded

start_row
[int] defaults to 0. It allows you to skip rows at the begginning

row_limit: int
defaults to -1, meaning till the end of the whole sheet. It allows you to skip the tailing rows.

start_column
[int] defaults to 0. It allows you to skip columns on your left hand side

column_limit: int
defaults to -1, meaning till the end of the columns. It allows you to skip the tailing columns.

skip_row_func:
It allows you to write your own row skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_column_func:
It allows you to write your own column skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_empty_rows: bool
Defaults to False. Toggle it to True if the rest of empty rows are useless, but it does affect the number of
rows.

row_renderer:
You could choose to write a custom row renderer when the data is being read.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

2.10. API documentation 123

pyexcel, Release 0.7.3

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,
encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

Parameters related to xls file format:
Please note the following parameters apply to pyexcel-xls. more details can be found in xlrd.
open_workbook()

logfile:
An open file to which messages and diagnostics are written.

verbosity:
Increases the volume of trace material written to the logfile.

use_mmap:
Whether to use the mmap module is determined heuristically. Use this arg to override the result.

Current heuristic: mmap is used if it exists.

encoding_override:
Used to overcome missing or bad codepage information in older-version files.

formatting_info:
The default is False, which saves memory.

When True, formatting information will be read from the spreadsheet file. This provides all cells, including
empty and blank cells. Formatting information is available for each cell.

ragged_rows:
The default of False means all rows are padded out with empty cells so that all rows have the same size as
found in ncols.

True means that there are no empty cells at the ends of rows. This can result in substantial memory savings
if rows are of widely varying sizes. See also the row_len() method.

124 Chapter 2. Support the project

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters
https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook
https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook

pyexcel, Release 0.7.3

When you use this function to work on physical files, this function will leave its file handle open. When you
finish the operation on its data, you need to call pyexcel.free_resources() to close file hande(s).

for csv, csvz file formats, file handles will be left open. for xls, ods file formats, the file is read all into memory
and is close afterwards. for xlsx, file handles will be left open in python 2.7 - 3.5 by pyexcel-xlsx(openpyxl). In
other words, pyexcel-xls, pyexcel-ods, pyexcel-ods3 won’t leak file handles.

pyexcel.free_resources

pyexcel.free_resources()

Close file handles opened by signature functions that starts with ‘i’

for csv, csvz file formats, file handles will be left open. for xls, ods file formats, the file is read all into memory
and is close afterwards. for xlsx, file handles will be left open in python 2.7 - 3.5 by pyexcel-xlsx(openpyxl). In
other words, pyexcel-xls, pyexcel-ods, pyexcel-ods3 won’t leak file handles.

Saving data to excel file

save_as(**keywords) Save a sheet from a data source to another one
isave_as(**keywords) Save a sheet from a data source to another one with less

memory
save_book_as(**keywords) Save a book from a data source to another one
isave_book_as(**keywords) Save a book from a data source to another one

pyexcel.save_as

pyexcel.save_as(**keywords)
Save a sheet from a data source to another one

It accepts two sets of keywords. Why two sets? one set is source, the other set is destination. In order to
distinguish the two sets, source set will be exactly the same as the ones for pyexcel.get_sheet(); destination
set are exactly the same as the ones for pyexcel.Sheet.save_as but require a ‘dest’ prefix.

Saving to source parameters
file dest_file_name, dest_sheet_name,dest_force_file_type keywords with prefix ‘dest’
memory dest_file_type, dest_content, dest_sheet_name, keywords with prefix ‘dest’
sql dest_session, dest_table, dest_initializer, dest_mapdict
django model dest_model, dest_initializer, dest_mapdict, dest_batch_size

Examples on start_row, start_column
Let’s assume the following file is a huge csv file:

>>> import datetime
>>> import pyexcel as pe
>>> data = [
... [1, 21, 31],
... [2, 22, 32],
... [3, 23, 33],
... [4, 24, 34],
... [5, 25, 35],
... [6, 26, 36]

(continues on next page)

2.10. API documentation 125

pyexcel, Release 0.7.3

(continued from previous page)

...]
>>> pe.save_as(array=data, dest_file_name="your_file.csv")

And let’s pretend to read partial data:

>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3)
your_file.csv:
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

And you could as well do the same for columns:

>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 21 | 31 |
+----+----+
| 22 | 32 |
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+
| 26 | 36 |
+----+----+

Obvious, you could do both at the same time:

>>> pe.get_sheet(file_name="your_file.csv",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+

The pagination support is available across all pyexcel plugins.

ò Note

No column pagination support for query sets as data source.

126 Chapter 2. Support the project

pyexcel, Release 0.7.3

Formatting while transcoding a big data file

If you are transcoding a big data set, conventional formatting method would not help unless a on-demand free
RAM is available. However, there is a way to minimize the memory footprint of pyexcel while the formatting is
performed.

Let’s continue from previous example. Suppose we want to transcode “your_file.csv” to “your_file.xls” but
increase each element by 1.

What we can do is to define a row renderer function as the following:

>>> def increment_by_one(row):
... for element in row:
... yield element + 1

Then pass it onto save_as function using row_renderer:

>>> pe.isave_as(file_name="your_file.csv",
... row_renderer=increment_by_one,
... dest_file_name="your_file.xlsx")

ò Note

If the data content is from a generator, isave_as has to be used.

We can verify if it was done correctly:

>>> pe.get_sheet(file_name="your_file.xlsx")
your_file.csv:
+---+----+----+
| 2 | 22 | 32 |
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+
| 6 | 26 | 36 |
+---+----+----+
| 7 | 27 | 37 |
+---+----+----+

Not all parameters are needed. Here is a table

2.10. API documentation 127

pyexcel, Release 0.7.3

source parameters
loading from file file_name, sheet_name, keywords
loading from string file_content, file_type, sheet_name, keywords
loading from stream file_stream, file_type, sheet_name, keywords
loading from sql session, table
loading from sql in django model
loading from query sets any query sets(sqlalchemy or django)
loading from dictionary adict, with_keys
loading from records records
loading from array array
loading from an url url

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

table :
database table

model:
a django model

adict:
a dictionary of one dimensional arrays

url :
a download http url for your excel file

with_keys :
load with previous dictionary’s keys, default is True

records :
a list of dictionaries that have the same keys

array :
a two dimensional array, a list of lists

sheet_name :
sheet name. if sheet_name is not given, the default sheet at index 0 is loaded

start_row
[int] defaults to 0. It allows you to skip rows at the begginning

row_limit: int
defaults to -1, meaning till the end of the whole sheet. It allows you to skip the tailing rows.

128 Chapter 2. Support the project

pyexcel, Release 0.7.3

start_column
[int] defaults to 0. It allows you to skip columns on your left hand side

column_limit: int
defaults to -1, meaning till the end of the columns. It allows you to skip the tailing columns.

skip_row_func:
It allows you to write your own row skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_column_func:
It allows you to write your own column skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_empty_rows: bool
Defaults to False. Toggle it to True if the rest of empty rows are useless, but it does affect the number of
rows.

row_renderer:
You could choose to write a custom row renderer when the data is being read.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,

2.10. API documentation 129

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

Parameters related to xls file format:
Please note the following parameters apply to pyexcel-xls. more details can be found in xlrd.
open_workbook()

logfile:
An open file to which messages and diagnostics are written.

verbosity:
Increases the volume of trace material written to the logfile.

use_mmap:
Whether to use the mmap module is determined heuristically. Use this arg to override the result.

Current heuristic: mmap is used if it exists.

encoding_override:
Used to overcome missing or bad codepage information in older-version files.

formatting_info:
The default is False, which saves memory.

When True, formatting information will be read from the spreadsheet file. This provides all cells, including
empty and blank cells. Formatting information is available for each cell.

ragged_rows:
The default of False means all rows are padded out with empty cells so that all rows have the same size as
found in ncols.

True means that there are no empty cells at the ends of rows. This can result in substantial memory savings
if rows are of widely varying sizes. See also the row_len() method.

dest_file_name:
another file name.

dest_file_type:
this is needed if you want to save to memory

dest_session:
the target database session

dest_table:
the target destination table

130 Chapter 2. Support the project

https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook
https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook

pyexcel, Release 0.7.3

dest_model:
the target django model

dest_mapdict:
a mapping dictionary see pyexcel.Sheet.save_to_memory()

dest_initializer:
a custom initializer function for table or model

dest_mapdict:
nominate headers

dest_batch_size:
object creation batch size. it is Django specific

dest_library:
choose a specific pyexcel-io plugin for writing

dest_source_library:
choose a specific data source plugin for writing

dest_renderer_library:
choose a pyexcel parser plugin for writing

if csv file is destination format, python csv fmtparams are accepted

for example: dest_lineterminator will replace default ‘ ‘ to the one you specified

In addition, this function use pyexcel.Sheet to render the data which could have performance penalty. In
exchange, parameters for pyexcel.Sheet can be passed on, e.g. name_columns_by_row.

pyexcel.isave_as

pyexcel.isave_as(**keywords)
Save a sheet from a data source to another one with less memory

It is similar to pyexcel.save_as() except that it does not accept parameters for pyexcel.Sheet. And it read
when it writes.

It accepts two sets of keywords. Why two sets? one set is source, the other set is destination. In order to
distinguish the two sets, source set will be exactly the same as the ones for pyexcel.get_sheet(); destination
set are exactly the same as the ones for pyexcel.Sheet.save_as but require a ‘dest’ prefix.

Saving to source parameters
file dest_file_name, dest_sheet_name,dest_force_file_type keywords with prefix ‘dest’
memory dest_file_type, dest_content, dest_sheet_name, keywords with prefix ‘dest’
sql dest_session, dest_table, dest_initializer, dest_mapdict
django model dest_model, dest_initializer, dest_mapdict, dest_batch_size

Examples on start_row, start_column
Let’s assume the following file is a huge csv file:

>>> import datetime
>>> import pyexcel as pe
>>> data = [
... [1, 21, 31],
... [2, 22, 32],

(continues on next page)

2.10. API documentation 131

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

(continued from previous page)

... [3, 23, 33],

... [4, 24, 34],

... [5, 25, 35],

... [6, 26, 36]

...]
>>> pe.save_as(array=data, dest_file_name="your_file.csv")

And let’s pretend to read partial data:

>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3)
your_file.csv:
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

And you could as well do the same for columns:

>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 21 | 31 |
+----+----+
| 22 | 32 |
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+
| 26 | 36 |
+----+----+

Obvious, you could do both at the same time:

>>> pe.get_sheet(file_name="your_file.csv",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+

The pagination support is available across all pyexcel plugins.

132 Chapter 2. Support the project

pyexcel, Release 0.7.3

ò Note

No column pagination support for query sets as data source.

Formatting while transcoding a big data file

If you are transcoding a big data set, conventional formatting method would not help unless a on-demand free
RAM is available. However, there is a way to minimize the memory footprint of pyexcel while the formatting is
performed.

Let’s continue from previous example. Suppose we want to transcode “your_file.csv” to “your_file.xls” but
increase each element by 1.

What we can do is to define a row renderer function as the following:

>>> def increment_by_one(row):
... for element in row:
... yield element + 1

Then pass it onto save_as function using row_renderer:

>>> pe.isave_as(file_name="your_file.csv",
... row_renderer=increment_by_one,
... dest_file_name="your_file.xlsx")

ò Note

If the data content is from a generator, isave_as has to be used.

We can verify if it was done correctly:

>>> pe.get_sheet(file_name="your_file.xlsx")
your_file.csv:
+---+----+----+
| 2 | 22 | 32 |
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+
| 6 | 26 | 36 |
+---+----+----+
| 7 | 27 | 37 |
+---+----+----+

Not all parameters are needed. Here is a table

2.10. API documentation 133

pyexcel, Release 0.7.3

source parameters
loading from file file_name, sheet_name, keywords
loading from string file_content, file_type, sheet_name, keywords
loading from stream file_stream, file_type, sheet_name, keywords
loading from sql session, table
loading from sql in django model
loading from query sets any query sets(sqlalchemy or django)
loading from dictionary adict, with_keys
loading from records records
loading from array array
loading from an url url

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

table :
database table

model:
a django model

adict:
a dictionary of one dimensional arrays

url :
a download http url for your excel file

with_keys :
load with previous dictionary’s keys, default is True

records :
a list of dictionaries that have the same keys

array :
a two dimensional array, a list of lists

sheet_name :
sheet name. if sheet_name is not given, the default sheet at index 0 is loaded

start_row
[int] defaults to 0. It allows you to skip rows at the begginning

row_limit: int
defaults to -1, meaning till the end of the whole sheet. It allows you to skip the tailing rows.

134 Chapter 2. Support the project

pyexcel, Release 0.7.3

start_column
[int] defaults to 0. It allows you to skip columns on your left hand side

column_limit: int
defaults to -1, meaning till the end of the columns. It allows you to skip the tailing columns.

skip_row_func:
It allows you to write your own row skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_column_func:
It allows you to write your own column skipping functions.

The protocol is to return pyexcel_io.constants.SKIP_DATA if skipping data, pyex-
cel_io.constants.TAKE_DATA to read data, pyexcel_io.constants.STOP_ITERATION to exit the
reading procedure

skip_empty_rows: bool
Defaults to False. Toggle it to True if the rest of empty rows are useless, but it does affect the number of
rows.

row_renderer:
You could choose to write a custom row renderer when the data is being read.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,

2.10. API documentation 135

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

Parameters related to xls file format:
Please note the following parameters apply to pyexcel-xls. more details can be found in xlrd.
open_workbook()

logfile:
An open file to which messages and diagnostics are written.

verbosity:
Increases the volume of trace material written to the logfile.

use_mmap:
Whether to use the mmap module is determined heuristically. Use this arg to override the result.

Current heuristic: mmap is used if it exists.

encoding_override:
Used to overcome missing or bad codepage information in older-version files.

formatting_info:
The default is False, which saves memory.

When True, formatting information will be read from the spreadsheet file. This provides all cells, including
empty and blank cells. Formatting information is available for each cell.

ragged_rows:
The default of False means all rows are padded out with empty cells so that all rows have the same size as
found in ncols.

True means that there are no empty cells at the ends of rows. This can result in substantial memory savings
if rows are of widely varying sizes. See also the row_len() method.

dest_file_name:
another file name.

dest_file_type:
this is needed if you want to save to memory

dest_session:
the target database session

dest_table:
the target destination table

136 Chapter 2. Support the project

https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook
https://xlrd.readthedocs.io/en/latest/api.html#xlrd.open_workbook

pyexcel, Release 0.7.3

dest_model:
the target django model

dest_mapdict:
a mapping dictionary see pyexcel.Sheet.save_to_memory()

dest_initializer:
a custom initializer function for table or model

dest_mapdict:
nominate headers

dest_batch_size:
object creation batch size. it is Django specific

dest_library:
choose a specific pyexcel-io plugin for writing

dest_source_library:
choose a specific data source plugin for writing

dest_renderer_library:
choose a pyexcel parser plugin for writing

if csv file is destination format, python csv fmtparams are accepted

for example: dest_lineterminator will replace default ‘ ‘ to the one you specified

In addition, this function use pyexcel.Sheet to render the data which could have performance penalty. In
exchange, parameters for pyexcel.Sheet can be passed on, e.g. name_columns_by_row.

When you use this function to work on physical files, this function will leave its file handle open. When you
finish the operation on its data, you need to call pyexcel.free_resources() to close file hande(s).

for csv, csvz file formats, file handles will be left open. for xls, ods file formats, the file is read all into memory
and is close afterwards. for xlsx, file handles will be left open in python 2.7 - 3.5 by pyexcel-xlsx(openpyxl). In
other words, pyexcel-xls, pyexcel-ods, pyexcel-ods3 won’t leak file handles.

pyexcel.save_book_as

pyexcel.save_book_as(**keywords)
Save a book from a data source to another one

Here is a table of parameters:

source parameters
loading from file file_name, keywords
loading from string file_content, file_type, keywords
loading from stream file_stream, file_type, keywords
loading from sql session, tables
loading from django models models
loading from dictionary bookdict
loading from an url url

Where the dictionary should have text as keys and two dimensional array as values.

Parameters
file_name :

a file with supported file extension

2.10. API documentation 137

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

tables :
a list of database table

models :
a list of django models

bookdict :
a dictionary of two dimensional arrays

url :
a download http url for your excel file

sheets:
a list of mixed sheet names and sheet indices to be read. This is done to keep Pandas compactibility. With
this parameter, more than one sheet can be read and you have the control to read the sheets of your interest
instead of all available sheets.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

138 Chapter 2. Support the project

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,
encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

dest_file_name:
another file name.

dest_file_type:
this is needed if you want to save to memory

dest_session :
the target database session

dest_tables :
the list of target destination tables

dest_models :
the list of target destination django models

dest_mapdicts :
a list of mapping dictionaries

dest_initializers :
table initialization functions

dest_mapdicts :
to nominate a model or table fields. Optional

dest_batch_size :
batch creation size. Optional

Where the dictionary should have text as keys and two dimensional array as values.

Saving to source parameters
file dest_file_name, dest_sheet_name, keywords with prefix ‘dest’
memory dest_file_type, dest_content, dest_sheet_name, keywords with prefix ‘dest’
sql dest_session, dest_tables, dest_table_init_func, dest_mapdict
django model dest_models, dest_initializers, dest_mapdict, dest_batch_size

2.10. API documentation 139

pyexcel, Release 0.7.3

pyexcel.isave_book_as

pyexcel.isave_book_as(**keywords)
Save a book from a data source to another one

It is similar to pyexcel.save_book_as() but it read when it writes. This function provide some speedup but
the output data is not made uniform.

Here is a table of parameters:

source parameters
loading from file file_name, keywords
loading from string file_content, file_type, keywords
loading from stream file_stream, file_type, keywords
loading from sql session, tables
loading from django models models
loading from dictionary bookdict
loading from an url url

Where the dictionary should have text as keys and two dimensional array as values.

Parameters
file_name :

a file with supported file extension

file_content :
the file content

file_stream :
the file stream

file_type :
the file type in file_content or file_stream

session :
database session

tables :
a list of database table

models :
a list of django models

bookdict :
a dictionary of two dimensional arrays

url :
a download http url for your excel file

sheets:
a list of mixed sheet names and sheet indices to be read. This is done to keep Pandas compactibility. With
this parameter, more than one sheet can be read and you have the control to read the sheets of your interest
instead of all available sheets.

auto_detect_float :
defaults to True

auto_detect_int :
defaults to True

140 Chapter 2. Support the project

pyexcel, Release 0.7.3

auto_detect_datetime :
defaults to True

ignore_infinity :
defaults to True

library :
choose a specific pyexcel-io plugin for reading

source_library :
choose a specific data source plugin for reading

parser_library :
choose a pyexcel parser plugin for reading

skip_hidden_sheets:
default is True. Please toggle it to read hidden sheets

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,
encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

dest_file_name:
another file name.

dest_file_type:
this is needed if you want to save to memory

dest_session :
the target database session

dest_tables :
the list of target destination tables

2.10. API documentation 141

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

dest_models :
the list of target destination django models

dest_mapdicts :
a list of mapping dictionaries

dest_initializers :
table initialization functions

dest_mapdicts :
to nominate a model or table fields. Optional

dest_batch_size :
batch creation size. Optional

Where the dictionary should have text as keys and two dimensional array as values.

Saving to source parameters
file dest_file_name, dest_sheet_name, keywords with prefix ‘dest’
memory dest_file_type, dest_content, dest_sheet_name, keywords with prefix ‘dest’
sql dest_session, dest_tables, dest_table_init_func, dest_mapdict
django model dest_models, dest_initializers, dest_mapdict, dest_batch_size

When you use this function to work on physical files, this function will leave its file handle open. When you
finish the operation on its data, you need to call pyexcel.free_resources() to close file hande(s).

for csv, csvz file formats, file handles will be left open. for xls, ods file formats, the file is read all into memory
and is close afterwards. for xlsx, file handles will be left open in python 2.7 - 3.5 by pyexcel-xlsx(openpyxl). In
other words, pyexcel-xls, pyexcel-ods, pyexcel-ods3 won’t leak file handles.

These flags can be passed on all signature functions:

auto_detect_int

Automatically convert float values to integers if the float number has no decimal values(e.g. 1.00). By default, it does
the detection. Setting it to False will turn on this behavior

It has no effect on pyexcel-xlsx because it does that by default.

auto_detect_float

Automatically convert text to float values if possible. This applies only pyexcel-io where csv, tsv, csvz and tsvz formats
are supported. By default, it does the detection. Setting it to False will turn on this behavior

auto_detect_datetime

Automatically convert text to python datetime if possible. This applies only pyexcel-io where csv, tsv, csvz and tsvz
formats are supported. By default, it does the detection. Setting it to False will turn on this behavior

library

Name a pyexcel plugin to handle a file format. In the situation where multiple plugins were pip installed, it is confusing
for pyexcel on which plugin to handle the file format. For example, both pyexcel-xlsx and pyexcel-xls reads xlsx format.
Now since version 0.2.2, you can pass on library=”pyexcel-xls” to handle xlsx in a specific function call.

It is better to uninstall the unwanted pyexcel plugin using pip if two plugins for the same file type are not absolutely
necessary.

142 Chapter 2. Support the project

pyexcel, Release 0.7.3

Cookbook

merge_csv_to_a_book(filelist[, out_file_name]) merge a list of csv files into a excel book
merge_all_to_a_book(filelist[, out_file_name]) merge a list of excel files into a excel book
split_a_book(file_name[, out_file_name]) Split a file into separate sheets
extract_a_sheet_from_a_book(file_name, sheet-
name)

Extract a sheet from a excel book

pyexcel.merge_csv_to_a_book

pyexcel.merge_csv_to_a_book(filelist, out_file_name='merged.xls')
merge a list of csv files into a excel book

Parameters
• filelist (list) – a list of accessible file path

• out_file_name (str) – save the sheet as

pyexcel.merge_all_to_a_book

pyexcel.merge_all_to_a_book(filelist, out_file_name='merged.xls')
merge a list of excel files into a excel book

Parameters
• filelist (list) – a list of accessible file path

• out_file_name (str) – save the sheet as

pyexcel.split_a_book

pyexcel.split_a_book(file_name, out_file_name=None)
Split a file into separate sheets

Parameters
• file_name (str) – an accessible file name

• out_file_name (str) – save the sheets with file suffix

pyexcel.extract_a_sheet_from_a_book

pyexcel.extract_a_sheet_from_a_book(file_name, sheetname, out_file_name=None)
Extract a sheet from a excel book

Parameters
• file_name (str) – an accessible file name

• sheetname (str) – a valid sheet name

• out_file_name (str) – save the sheet as

2.10. API documentation 143

pyexcel, Release 0.7.3

Book

Here’s the entity relationship between Book, Sheet, Row and Column

Constructor

Book([sheets, filename, path]) Read an excel book that has one or more sheets

pyexcel.Book

class pyexcel.Book(sheets=None, filename='memory', path=None)
Read an excel book that has one or more sheets

For csv file, there will be just one sheet

__init__(sheets=None, filename='memory', path=None)
Book constructor

Selecting a specific book according to filename extension

Parameters
• sheets – a dictionary of data

• filename – the physical file

• path – the relative path or absolute path

• keywords – additional parameters to be passed on

144 Chapter 2. Support the project

pyexcel, Release 0.7.3

Methods

__init__([sheets, filename, path]) Book constructor
get_array(**keywords) Get data in array format
get_bookdict(**keywords) Get data in bookdict format
get_csv(**keywords) Get data in csv format
get_csvz(**keywords) Get data in csvz format
get_dict(**keywords) Get data in dict format
get_fods(**__) fods getter is not defined.
get_handsontable(**keywords) Get data in handsontable format
get_handsontable_html(**keywords) Get data in handsontable.html format
get_html(**__) html getter is not defined.
get_ods(**keywords) Get data in ods format
get_pdf(**__) pdf getter is not defined.
get_queryset(**__) queryset getter is not defined.
get_records(**keywords) Get data in records format
get_svg(**keywords) Get data in svg format
get_texttable(**keywords) Get data in texttable format
get_tsv(**keywords) Get data in tsv format
get_tsvz(**keywords) Get data in tsvz format
get_url(**__) url getter is not defined.
get_xls(**keywords) Get data in xls format
get_xlsb(**__) xlsb getter is not defined.
get_xlsm(**keywords) Get data in xlsm format
get_xlsx(**keywords) Get data in xlsx format
init([sheets, filename, path]) indpendent function so that it could be called multiple

times
load_from_sheets(sheets) Load content from existing sheets
number_of_sheets() Return the number of sheets
plot([file_type]) Visualize the data
register_input(file_type, *[, ...]) create custom attributes for each class
register_io(file_type, *[, instance_name, ...]) create custom attributes for each class
register_presentation(file_type, *[, ...]) create custom attributes for each class
remove_sheet(sheet) Remove a sheet
save_as(filename, **keywords) Save the content to a new file
save_to_database(session, tables[, ...]) Save data in sheets to database tables
save_to_django_models(models[, ...]) Save to database table through django model
save_to_memory(file_type[, stream]) Save the content to a memory stream
set_array(content, **keywords) Set data in array format
set_bookdict(content, **keywords) Set data in bookdict format
set_csv(content, **keywords) Set data in csv format
set_csvz(content, **keywords) Set data in csvz format
set_dict(content, **keywords) Set data in dict format
set_fods(content, **keywords) Set data in fods format
set_handsontable(_y, **_z) handsontable setter is not defined.
set_handsontable_html(_y, **_z) handsontable.html setter is not defined.
set_html(content, **keywords) Set data in html format
set_ods(content, **keywords) Set data in ods format
set_pdf(content, **keywords) Set data in pdf format
set_queryset(content, **keywords) Set data in queryset format
set_records(content, **keywords) Set data in records format
set_svg(_y, **_z) svg setter is not defined.

continues on next page

2.10. API documentation 145

pyexcel, Release 0.7.3

Table 13 – continued from previous page
set_texttable(_y, **_z) texttable setter is not defined.
set_tsv(content, **keywords) Set data in tsv format
set_tsvz(content, **keywords) Set data in tsvz format
set_url(content, **keywords) Set data in url format
set_xls(content, **keywords) Set data in xls format
set_xlsb(content, **keywords) Set data in xlsb format
set_xlsm(content, **keywords) Set data in xlsm format
set_xlsx(content, **keywords) Set data in xlsx format
sheet_by_index(index) Get the sheet with the specified index
sheet_by_name(name) Get the sheet with the specified name
sheet_names() Return all sheet names
sort_sheets([key, reverse])

to_dict() Convert the book to a dictionary

Attributes

array Get/Set data in/from array format
bookdict Get/Set data in/from bookdict format
csv Get/Set data in/from csv format
csvz Get/Set data in/from csvz format
dict Get/Set data in/from dict format
fods Set data in fods format
handsontable Get data in handsontable format
handsontable_html Get data in handsontable.html format
html Set data in html format
ods Get/Set data in/from ods format
pdf Set data in pdf format
queryset Set data in queryset format
records Get/Set data in/from records format
stream Return a stream in which the content is properly en-

coded
svg Get data in svg format
texttable Get data in texttable format
tsv Get/Set data in/from tsv format
tsvz Get/Set data in/from tsvz format
url Set data in url format
xls Get/Set data in/from xls format
xlsb Set data in xlsb format
xlsm Get/Set data in/from xlsm format
xlsx Get/Set data in/from xlsx format

Attribute

Book.number_of_sheets() Return the number of sheets
Book.sheet_names() Return all sheet names

146 Chapter 2. Support the project

pyexcel, Release 0.7.3

pyexcel.Book.number_of_sheets

Book.number_of_sheets()

Return the number of sheets

pyexcel.Book.sheet_names

Book.sheet_names()

Return all sheet names

Conversions

Book.bookdict Get/Set data in/from bookdict format
Book.url Set data in url format
Book.csv Get/Set data in/from csv format
Book.tsv Get/Set data in/from tsv format
Book.csvz Get/Set data in/from csvz format
Book.tsvz Get/Set data in/from tsvz format
Book.xls Get/Set data in/from xls format
Book.xlsm Get/Set data in/from xlsm format
Book.xlsx Get/Set data in/from xlsx format
Book.ods Get/Set data in/from ods format
Book.stream Return a stream in which the content is properly encoded

pyexcel.Book.bookdict

property Book.bookdict

Get/Set data in/from bookdict format

You could obtain content in bookdict format by dot notation:

Book.bookdict

And you could as well set content by dot notation:

Book.bookdict = the_io_stream_in_bookdict_format

if you need to pass on more parameters, you could use:

Book.get_bookdict(**keywords)
Book.set_bookdict(the_io_stream_in_bookdict_format, **keywords)

pyexcel.Book.url

property Book.url

Set data in url format

You could set content in url format by dot notation:

Book.url

2.10. API documentation 147

pyexcel, Release 0.7.3

if you need to pass on more parameters, you could use:

Book.set_url(the_io_stream_in_url_format, **keywords)

pyexcel.Book.csv

property Book.csv

Get/Set data in/from csv format

You could obtain content in csv format by dot notation:

Book.csv

And you could as well set content by dot notation:

Book.csv = the_io_stream_in_csv_format

if you need to pass on more parameters, you could use:

Book.get_csv(**keywords)
Book.set_csv(the_io_stream_in_csv_format, **keywords)

pyexcel.Book.tsv

property Book.tsv

Get/Set data in/from tsv format

You could obtain content in tsv format by dot notation:

Book.tsv

And you could as well set content by dot notation:

Book.tsv = the_io_stream_in_tsv_format

if you need to pass on more parameters, you could use:

Book.get_tsv(**keywords)
Book.set_tsv(the_io_stream_in_tsv_format, **keywords)

pyexcel.Book.csvz

property Book.csvz

Get/Set data in/from csvz format

You could obtain content in csvz format by dot notation:

Book.csvz

And you could as well set content by dot notation:

Book.csvz = the_io_stream_in_csvz_format

if you need to pass on more parameters, you could use:

148 Chapter 2. Support the project

pyexcel, Release 0.7.3

Book.get_csvz(**keywords)
Book.set_csvz(the_io_stream_in_csvz_format, **keywords)

pyexcel.Book.tsvz

property Book.tsvz

Get/Set data in/from tsvz format

You could obtain content in tsvz format by dot notation:

Book.tsvz

And you could as well set content by dot notation:

Book.tsvz = the_io_stream_in_tsvz_format

if you need to pass on more parameters, you could use:

Book.get_tsvz(**keywords)
Book.set_tsvz(the_io_stream_in_tsvz_format, **keywords)

pyexcel.Book.xls

property Book.xls

Get/Set data in/from xls format

You could obtain content in xls format by dot notation:

Book.xls

And you could as well set content by dot notation:

Book.xls = the_io_stream_in_xls_format

if you need to pass on more parameters, you could use:

Book.get_xls(**keywords)
Book.set_xls(the_io_stream_in_xls_format, **keywords)

pyexcel.Book.xlsm

property Book.xlsm

Get/Set data in/from xlsm format

You could obtain content in xlsm format by dot notation:

Book.xlsm

And you could as well set content by dot notation:

Book.xlsm = the_io_stream_in_xlsm_format

if you need to pass on more parameters, you could use:

2.10. API documentation 149

pyexcel, Release 0.7.3

Book.get_xlsm(**keywords)
Book.set_xlsm(the_io_stream_in_xlsm_format, **keywords)

pyexcel.Book.xlsx

property Book.xlsx

Get/Set data in/from xlsx format

You could obtain content in xlsx format by dot notation:

Book.xlsx

And you could as well set content by dot notation:

Book.xlsx = the_io_stream_in_xlsx_format

if you need to pass on more parameters, you could use:

Book.get_xlsx(**keywords)
Book.set_xlsx(the_io_stream_in_xlsx_format, **keywords)

pyexcel.Book.ods

property Book.ods

Get/Set data in/from ods format

You could obtain content in ods format by dot notation:

Book.ods

And you could as well set content by dot notation:

Book.ods = the_io_stream_in_ods_format

if you need to pass on more parameters, you could use:

Book.get_ods(**keywords)
Book.set_ods(the_io_stream_in_ods_format, **keywords)

pyexcel.Book.stream

property Book.stream

Return a stream in which the content is properly encoded

Example:

>>> import pyexcel as p
>>> b = p.get_book(bookdict={"A": [[1]]})
>>> csv_stream = b.stream.texttable
>>> print(csv_stream.getvalue())
A:
+---+
| 1 |
+---+

150 Chapter 2. Support the project

pyexcel, Release 0.7.3

Where b.stream.xls.getvalue() is equivalent to b.xls. In some situation b.stream.xls is preferred than b.xls.

Sheet examples:

>>> import pyexcel as p
>>> s = p.Sheet([[1]], 'A')
>>> csv_stream = s.stream.texttable
>>> print(csv_stream.getvalue())
A:
+---+
| 1 |
+---+

Where s.stream.xls.getvalue() is equivalent to s.xls. In some situation s.stream.xls is preferred than s.xls.

It is similar to save_to_memory().

Save changes

Book.save_as(filename, **keywords) Save the content to a new file
Book.save_to_memory(file_type[, stream]) Save the content to a memory stream
Book.save_to_database(session, tables[, ...]) Save data in sheets to database tables
Book.save_to_django_models(models[, ...]) Save to database table through django model

pyexcel.Book.save_as

Book.save_as(filename, **keywords)
Save the content to a new file

Keywords may vary depending on your file type, because the associated file type employs different library.

PARAMETERS
filename: a file path

library:
choose a specific pyexcel-io plugin for writing

renderer_library:
choose a pyexcel parser plugin for writing

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,
encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

2.10. API documentation 151

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

pyexcel.Book.save_to_memory

Book.save_to_memory(file_type, stream=None, **keywords)
Save the content to a memory stream

Parameters
• file_type – what format the stream is in

• stream – a memory stream. Note in Python 3, for csv and tsv format, please pass an instance
of StringIO. For xls, xlsx, and ods, an instance of BytesIO.

pyexcel.Book.save_to_database

Book.save_to_database(session, tables, initializers=None, mapdicts=None, auto_commit=True)
Save data in sheets to database tables

Parameters
• session – database session

• tables – a list of database tables, that is accepted by Sheet.save_to_database(). The
sequence of tables matters when there is dependencies in between the tables. For example,
Car is made by Car Maker. Car Maker table should be specified before Car table.

• initializers – a list of intialization functions for your tables and the sequence should
match tables,

• mapdicts – custom map dictionary for your data columns and the sequence should match
tables

• auto_commit – by default, data is committed.

pyexcel.Book.save_to_django_models

Book.save_to_django_models(models, initializers=None, mapdicts=None, **keywords)
Save to database table through django model

Parameters
• models – a list of database models, that is accepted by Sheet.save_to_django_model().

The sequence of tables matters when there is dependencies in between the tables. For exam-
ple, Car is made by Car Maker. Car Maker table should be specified before Car table.

• initializers – a list of intialization functions for your tables and the sequence should
match tables,

152 Chapter 2. Support the project

pyexcel, Release 0.7.3

• mapdicts – custom map dictionary for your data columns and the sequence should match
tables

optional parameters: :param batch_size: django bulk_create batch size :param bulk_save: whether to use
bulk_create or to use single save

per record

Sheet

Constructor

Sheet([sheet, name, name_columns_by_row, ...]) Two dimensional data container for filtering, formatting
and iteration

pyexcel.Sheet

class pyexcel.Sheet(sheet=None, name='pyexcel sheet', name_columns_by_row=-1,
name_rows_by_column=-1, colnames=None, rownames=None, transpose_before=False,
transpose_after=False)

Two dimensional data container for filtering, formatting and iteration

Sheet is a container for a two dimensional array, where individual cell can be any Python types. Other than
numbers, value of these types: string, date, time and boolean can be mixed in the array. This differs from
Numpy’s matrix where each cell are of the same number type.

In order to prepare two dimensional data for your computation, formatting functions help convert array cells to
required types. Formatting can be applied not only to the whole sheet but also to selected rows or columns.
Custom conversion function can be passed to these formatting functions. For example, to remove extra spaces
surrounding the content of a cell, a custom function is required.

Filtering functions are used to reduce the information contained in the array.

Variables
• name – sheet name. use to change sheet name

• row – access data row by row

• column – access data column by column

Example:

>>> import pyexcel as p
>>> content = {'A': [[1]]}
>>> b = p.get_book(bookdict=content)
>>> b
A:
+---+
| 1 |
+---+
>>> b[0].name
'A'
>>> b[0].name = 'B'
>>> b
B:
+---+

(continues on next page)

2.10. API documentation 153

pyexcel, Release 0.7.3

(continued from previous page)

| 1 |
+---+

__init__(sheet=None, name='pyexcel sheet', name_columns_by_row=-1, name_rows_by_column=-1,
colnames=None, rownames=None, transpose_before=False, transpose_after=False)

Constructor

Parameters
• sheet – two dimensional array

• name – this becomes the sheet name.

• name_columns_by_row – use a row to name all columns

• name_rows_by_column – use a column to name all rows

• colnames – use an external list of strings to name the columns

• rownames – use an external list of strings to name the rows

Methods

__init__([sheet, name, name_columns_by_row,
...])

Constructor

cell_value(row, column[, new_value]) Random access to table cells
clone()

column_at(index) Gets the data at the specified column
column_range() Utility function to get column range
columns() Returns a left to right column iterator
contains(predicate) Has something in the table
cut(topleft_corner, bottomright_corner) Get a rectangle shaped data out and clear them in po-

sition
delete_columns(column_indices) Delete one or more columns
delete_named_column_at(name) Works only after you named columns by a row
delete_named_row_at(name) Take the first column as row names
delete_rows(row_indices) Delete one or more rows
enumerate() Iterate cell by cell from top to bottom and from left

to right
extend_columns(columns) Take ordereddict to extend named columns
extend_columns_with_rows(rows) Put rows on the right most side of the data
extend_rows(rows) Take ordereddict to extend named rows
filter([column_indices, row_indices]) Apply the filter with immediate effect
format(formatter) Apply a formatting action for the whole sheet
get_array(**keywords) Get data in array format
get_bookdict(**keywords) Get data in bookdict format
get_csv(**keywords) Get data in csv format
get_csvz(**keywords) Get data in csvz format
get_dict(**keywords) Get data in dict format
get_fods(**__) fods getter is not defined.
get_handsontable(**keywords) Get data in handsontable format
get_handsontable_html(**keywords) Get data in handsontable.html format
get_html(**__) html getter is not defined.

continues on next page

154 Chapter 2. Support the project

pyexcel, Release 0.7.3

Table 19 – continued from previous page
get_internal_array() present internal array
get_ods(**keywords) Get data in ods format
get_pdf(**__) pdf getter is not defined.
get_queryset(**__) queryset getter is not defined.
get_records(**keywords) Get data in records format
get_svg(**keywords) Get data in svg format
get_texttable(**keywords) Get data in texttable format
get_tsv(**keywords) Get data in tsv format
get_tsvz(**keywords) Get data in tsvz format
get_url(**__) url getter is not defined.
get_xls(**keywords) Get data in xls format
get_xlsb(**__) xlsb getter is not defined.
get_xlsm(**keywords) Get data in xlsm format
get_xlsx(**keywords) Get data in xlsx format
group_rows_by_column(column_index_or_name) Group rows with similiar column into a two dimen-

sional array.
init([sheet, name, name_columns_by_row, ...]) custom initialization functions
map(custom_function) Execute a function across all cells of the sheet
name_columns_by_row(row_index) Use the elements of a specified row to represent indi-

vidual columns
name_rows_by_column(column_index) Use the elements of a specified column to represent

individual rows
named_column_at(name) Get a column by its name
named_columns() iterate rows using column names
named_row_at(name) Get a row by its name
named_rows() iterate rows using row names
number_of_columns() The number of columns
number_of_rows() The number of rows
paste(topleft_corner[, rows, columns]) Paste a rectangle shaped data after a position
plot([file_type]) Visualize the data
project(new_ordered_columns[, exclusion]) Rearrange the sheet.
rcolumns() Returns a right to left column iterator
region(topleft_corner, bottomright_corner) Get a rectangle shaped data out
register_input(file_type[, instance_name, ...]) create custom attributes for each class
register_io(file_type[, instance_name, ...]) create custom attributes for each class
register_presentation(file_type[, ...]) create custom attributes for each class
reverse() Opposite to enumerate
row_at(index) Gets the data at the specified row
row_range() Utility function to get row range
rows() Returns a top to bottom row iterator
rrows() Returns a bottom to top row iterator
rvertical() Default iterator to go through each cell one by one

from rightmost column to leftmost row and from bot-
tom to top example.

save_as(filename, **keywords) Save the content to a named file
save_to_database(session, table[, ...]) Save data in sheet to database table
save_to_django_model(model[, initializer, ...]) Save to database table through django model
save_to_memory(file_type[, stream]) Save the content to memory
set_array(content, **keywords) Set data in array format
set_bookdict(content, **keywords) Set data in bookdict format
set_column_at(column_index, data_array[, ...]) Updates a column data range
set_csv(content, **keywords) Set data in csv format

continues on next page

2.10. API documentation 155

pyexcel, Release 0.7.3

Table 19 – continued from previous page
set_csvz(content, **keywords) Set data in csvz format
set_dict(content, **keywords) Set data in dict format
set_fods(content, **keywords) Set data in fods format
set_handsontable(_y, **_z) handsontable setter is not defined.
set_handsontable_html(_y, **_z) handsontable.html setter is not defined.
set_html(content, **keywords) Set data in html format
set_named_column_at(name, column_array) Take the first row as column names
set_named_row_at(name, row_array) Take the first column as row names
set_ods(content, **keywords) Set data in ods format
set_pdf(content, **keywords) Set data in pdf format
set_queryset(content, **keywords) Set data in queryset format
set_records(content, **keywords) Set data in records format
set_row_at(row_index, data_array) Update a row data range
set_svg(_y, **_z) svg setter is not defined.
set_texttable(_y, **_z) texttable setter is not defined.
set_tsv(content, **keywords) Set data in tsv format
set_tsvz(content, **keywords) Set data in tsvz format
set_url(content, **keywords) Set data in url format
set_xls(content, **keywords) Set data in xls format
set_xlsb(content, **keywords) Set data in xlsb format
set_xlsm(content, **keywords) Set data in xlsm format
set_xlsx(content, **keywords) Set data in xlsx format
to_array() Returns an array after filtering
to_dict([row]) Returns a dictionary
to_records([custom_headers]) Make an array of dictionaries
top([lines]) Preview top most 5 rows
top_left([rows, columns]) Preview top corner: 5x5
transpose() Rotate the data table by 90 degrees
vertical() Default iterator to go through each cell one by one

from leftmost column to rightmost row and from top
to bottom example.

Attributes

array Get/Set data in/from array format
bookdict Get/Set data in/from bookdict format
colnames Return column names if any
content Plain representation without headers
csv Get/Set data in/from csv format
csvz Get/Set data in/from csvz format
dict Get/Set data in/from dict format
fods Set data in fods format
handsontable Get data in handsontable format
handsontable_html Get data in handsontable.html format
html Set data in html format
ods Get/Set data in/from ods format
pdf Set data in pdf format
queryset Set data in queryset format
records Get/Set data in/from records format
rownames Return row names if any

continues on next page

156 Chapter 2. Support the project

pyexcel, Release 0.7.3

Table 20 – continued from previous page
stream Return a stream in which the content is properly en-

coded
svg Get data in svg format
texttable Get data in texttable format
tsv Get/Set data in/from tsv format
tsvz Get/Set data in/from tsvz format
url Set data in url format
xls Get/Set data in/from xls format
xlsb Set data in xlsb format
xlsm Get/Set data in/from xlsm format
xlsx Get/Set data in/from xlsx format

Attributes

Sheet.content Plain representation without headers
Sheet.number_of_rows() The number of rows
Sheet.number_of_columns() The number of columns
Sheet.row_range() Utility function to get row range
Sheet.column_range() Utility function to get column range

pyexcel.Sheet.content

property Sheet.content

Plain representation without headers

pyexcel.Sheet.number_of_rows

Sheet.number_of_rows()

The number of rows

pyexcel.Sheet.number_of_columns

Sheet.number_of_columns()

The number of columns

pyexcel.Sheet.row_range

Sheet.row_range()

Utility function to get row range

pyexcel.Sheet.column_range

Sheet.column_range()

Utility function to get column range

Cell access

2.10. API documentation 157

pyexcel, Release 0.7.3

Sheet.cell_value(row, column[, new_value]) Random access to table cells
Sheet.__getitem__(aset) By default, this class recognize from top to bottom from

left to right

pyexcel.Sheet.cell_value

Sheet.cell_value(row, column, new_value=None)
Random access to table cells

Parameters
• row (int) – row index which starts from 0

• column (int) – column index which starts from 0

• new_value (any) – new value if this is to set the value

pyexcel.Sheet.__getitem__

Sheet.__getitem__(aset)
By default, this class recognize from top to bottom from left to right

Row access

Sheet.row_at(index) Gets the data at the specified row
Sheet.set_row_at(row_index, data_array) Update a row data range
Sheet.delete_rows(row_indices) Delete one or more rows
Sheet.extend_rows(rows) Take ordereddict to extend named rows

pyexcel.Sheet.row_at

Sheet.row_at(index)
Gets the data at the specified row

pyexcel.Sheet.set_row_at

Sheet.set_row_at(row_index, data_array)
Update a row data range

pyexcel.Sheet.delete_rows

Sheet.delete_rows(row_indices)
Delete one or more rows

Parameters
row_indices (list) – a list of row indices

pyexcel.Sheet.extend_rows

Sheet.extend_rows(rows)
Take ordereddict to extend named rows

Parameters
rows (ordereddist/list) – a list of rows.

158 Chapter 2. Support the project

pyexcel, Release 0.7.3

Column access

Sheet.column_at(index) Gets the data at the specified column
Sheet.set_column_at(column_index, data_array) Updates a column data range
Sheet.delete_columns(column_indices) Delete one or more columns
Sheet.extend_columns(columns) Take ordereddict to extend named columns

pyexcel.Sheet.column_at

Sheet.column_at(index)
Gets the data at the specified column

pyexcel.Sheet.set_column_at

Sheet.set_column_at(column_index, data_array, starting=0)
Updates a column data range

It works like this if the call is: set_column_at(2, [‘N’,’N’, ‘N’], 1):

+--> column_index = 2
|

A B C
1 3 N <- starting = 1
2 4 N

This function will not set element outside the current table range

Parameters
• column_index (int) – which column to be modified

• data_array (list) – one dimensional array

• staring (int) – from which index, the update happens

Raises
IndexError – if column_index exceeds column range or starting exceeds row range

pyexcel.Sheet.delete_columns

Sheet.delete_columns(column_indices)
Delete one or more columns

Parameters
column_indices (list) – a list of column indices

pyexcel.Sheet.extend_columns

Sheet.extend_columns(columns)
Take ordereddict to extend named columns

Parameters
columns (ordereddist/list) – a list of columns

2.10. API documentation 159

pyexcel, Release 0.7.3

Data series

Any column as row name

Sheet.name_columns_by_row(row_index) Use the elements of a specified row to represent individ-
ual columns

Sheet.rownames Return row names if any
Sheet.named_column_at(name) Get a column by its name
Sheet.set_named_column_at(name, column_array) Take the first row as column names
Sheet.delete_named_column_at(name) Works only after you named columns by a row

pyexcel.Sheet.name_columns_by_row

Sheet.name_columns_by_row(row_index)
Use the elements of a specified row to represent individual columns

The specified row will be deleted from the data :param row_index: the index of the row that has the column
names

pyexcel.Sheet.rownames

property Sheet.rownames

Return row names if any

pyexcel.Sheet.named_column_at

Sheet.named_column_at(name)
Get a column by its name

pyexcel.Sheet.set_named_column_at

Sheet.set_named_column_at(name, column_array)
Take the first row as column names

Given name to identify the column index, set the column to the given array except the column name.

pyexcel.Sheet.delete_named_column_at

Sheet.delete_named_column_at(name)
Works only after you named columns by a row

Given name to identify the column index, set the column to the given array except the column name. :param str
name: a column name

Any row as column name

Sheet.name_rows_by_column(column_index) Use the elements of a specified column to represent in-
dividual rows

Sheet.colnames Return column names if any
Sheet.named_row_at(name) Get a row by its name
Sheet.set_named_row_at(name, row_array) Take the first column as row names

continues on next page

160 Chapter 2. Support the project

pyexcel, Release 0.7.3

Table 26 – continued from previous page
Sheet.delete_named_row_at(name) Take the first column as row names

pyexcel.Sheet.name_rows_by_column

Sheet.name_rows_by_column(column_index)
Use the elements of a specified column to represent individual rows

The specified column will be deleted from the data :param column_index: the index of the column that has the
row names

pyexcel.Sheet.colnames

property Sheet.colnames

Return column names if any

pyexcel.Sheet.named_row_at

Sheet.named_row_at(name)
Get a row by its name

pyexcel.Sheet.set_named_row_at

Sheet.set_named_row_at(name, row_array)
Take the first column as row names

Given name to identify the row index, set the row to the given array except the row name.

pyexcel.Sheet.delete_named_row_at

Sheet.delete_named_row_at(name)
Take the first column as row names

Given name to identify the row index, set the row to the given array except the row name.

Conversion

Sheet.array Get/Set data in/from array format
Sheet.records Get/Set data in/from records format
Sheet.dict Get/Set data in/from dict format
Sheet.url Set data in url format
Sheet.csv Get/Set data in/from csv format
Sheet.tsv Get/Set data in/from tsv format
Sheet.csvz Get/Set data in/from csvz format
Sheet.tsvz Get/Set data in/from tsvz format
Sheet.xls Get/Set data in/from xls format
Sheet.xlsm Get/Set data in/from xlsm format
Sheet.xlsx Get/Set data in/from xlsx format
Sheet.ods Get/Set data in/from ods format
Sheet.stream Return a stream in which the content is properly encoded

2.10. API documentation 161

pyexcel, Release 0.7.3

pyexcel.Sheet.array

property Sheet.array

Get/Set data in/from array format

You could obtain content in array format by dot notation:

Sheet.array

And you could as well set content by dot notation:

Sheet.array = the_io_stream_in_array_format

if you need to pass on more parameters, you could use:

Sheet.get_array(**keywords)
Sheet.set_array(the_io_stream_in_array_format, **keywords)

pyexcel.Sheet.records

property Sheet.records

Get/Set data in/from records format

You could obtain content in records format by dot notation:

Sheet.records

And you could as well set content by dot notation:

Sheet.records = the_io_stream_in_records_format

if you need to pass on more parameters, you could use:

Sheet.get_records(**keywords)
Sheet.set_records(the_io_stream_in_records_format, **keywords)

pyexcel.Sheet.dict

property Sheet.dict

Get/Set data in/from dict format

You could obtain content in dict format by dot notation:

Sheet.dict

And you could as well set content by dot notation:

Sheet.dict = the_io_stream_in_dict_format

if you need to pass on more parameters, you could use:

Sheet.get_dict(**keywords)
Sheet.set_dict(the_io_stream_in_dict_format, **keywords)

162 Chapter 2. Support the project

pyexcel, Release 0.7.3

pyexcel.Sheet.url

property Sheet.url

Set data in url format

You could set content in url format by dot notation:

Sheet.url

if you need to pass on more parameters, you could use:

Sheet.set_url(the_io_stream_in_url_format, **keywords)

pyexcel.Sheet.csv

property Sheet.csv

Get/Set data in/from csv format

You could obtain content in csv format by dot notation:

Sheet.csv

And you could as well set content by dot notation:

Sheet.csv = the_io_stream_in_csv_format

if you need to pass on more parameters, you could use:

Sheet.get_csv(**keywords)
Sheet.set_csv(the_io_stream_in_csv_format, **keywords)

pyexcel.Sheet.tsv

property Sheet.tsv

Get/Set data in/from tsv format

You could obtain content in tsv format by dot notation:

Sheet.tsv

And you could as well set content by dot notation:

Sheet.tsv = the_io_stream_in_tsv_format

if you need to pass on more parameters, you could use:

Sheet.get_tsv(**keywords)
Sheet.set_tsv(the_io_stream_in_tsv_format, **keywords)

pyexcel.Sheet.csvz

property Sheet.csvz

Get/Set data in/from csvz format

You could obtain content in csvz format by dot notation:

2.10. API documentation 163

pyexcel, Release 0.7.3

Sheet.csvz

And you could as well set content by dot notation:

Sheet.csvz = the_io_stream_in_csvz_format

if you need to pass on more parameters, you could use:

Sheet.get_csvz(**keywords)
Sheet.set_csvz(the_io_stream_in_csvz_format, **keywords)

pyexcel.Sheet.tsvz

property Sheet.tsvz

Get/Set data in/from tsvz format

You could obtain content in tsvz format by dot notation:

Sheet.tsvz

And you could as well set content by dot notation:

Sheet.tsvz = the_io_stream_in_tsvz_format

if you need to pass on more parameters, you could use:

Sheet.get_tsvz(**keywords)
Sheet.set_tsvz(the_io_stream_in_tsvz_format, **keywords)

pyexcel.Sheet.xls

property Sheet.xls

Get/Set data in/from xls format

You could obtain content in xls format by dot notation:

Sheet.xls

And you could as well set content by dot notation:

Sheet.xls = the_io_stream_in_xls_format

if you need to pass on more parameters, you could use:

Sheet.get_xls(**keywords)
Sheet.set_xls(the_io_stream_in_xls_format, **keywords)

pyexcel.Sheet.xlsm

property Sheet.xlsm

Get/Set data in/from xlsm format

You could obtain content in xlsm format by dot notation:

164 Chapter 2. Support the project

pyexcel, Release 0.7.3

Sheet.xlsm

And you could as well set content by dot notation:

Sheet.xlsm = the_io_stream_in_xlsm_format

if you need to pass on more parameters, you could use:

Sheet.get_xlsm(**keywords)
Sheet.set_xlsm(the_io_stream_in_xlsm_format, **keywords)

pyexcel.Sheet.xlsx

property Sheet.xlsx

Get/Set data in/from xlsx format

You could obtain content in xlsx format by dot notation:

Sheet.xlsx

And you could as well set content by dot notation:

Sheet.xlsx = the_io_stream_in_xlsx_format

if you need to pass on more parameters, you could use:

Sheet.get_xlsx(**keywords)
Sheet.set_xlsx(the_io_stream_in_xlsx_format, **keywords)

pyexcel.Sheet.ods

property Sheet.ods

Get/Set data in/from ods format

You could obtain content in ods format by dot notation:

Sheet.ods

And you could as well set content by dot notation:

Sheet.ods = the_io_stream_in_ods_format

if you need to pass on more parameters, you could use:

Sheet.get_ods(**keywords)
Sheet.set_ods(the_io_stream_in_ods_format, **keywords)

pyexcel.Sheet.stream

property Sheet.stream

Return a stream in which the content is properly encoded

Example:

2.10. API documentation 165

pyexcel, Release 0.7.3

>>> import pyexcel as p
>>> b = p.get_book(bookdict={"A": [[1]]})
>>> csv_stream = b.stream.texttable
>>> print(csv_stream.getvalue())
A:
+---+
| 1 |
+---+

Where b.stream.xls.getvalue() is equivalent to b.xls. In some situation b.stream.xls is preferred than b.xls.

Sheet examples:

>>> import pyexcel as p
>>> s = p.Sheet([[1]], 'A')
>>> csv_stream = s.stream.texttable
>>> print(csv_stream.getvalue())
A:
+---+
| 1 |
+---+

Where s.stream.xls.getvalue() is equivalent to s.xls. In some situation s.stream.xls is preferred than s.xls.

It is similar to save_to_memory().

Formatting

Sheet.format(formatter) Apply a formatting action for the whole sheet

pyexcel.Sheet.format

Sheet.format(formatter)
Apply a formatting action for the whole sheet

Example:

>>> import pyexcel as pe
>>> # Given a dictionary as the following
>>> data = {
... "1": [1, 2, 3, 4, 5, 6, 7, 8],
... "3": [1.25, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8],
... "5": [2, 3, 4, 5, 6, 7, 8, 9],
... "7": [1, '',]
... }
>>> sheet = pe.get_sheet(adict=data)
>>> sheet.row[1]
[1, 1.25, 2, 1]
>>> sheet.format(str)
>>> sheet.row[1]
['1', '1.25', '2', '1']
>>> sheet.format(int)

(continues on next page)

166 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

>>> sheet.row[1]
[1, 1, 2, 1]

Filtering

Sheet.filter([column_indices, row_indices]) Apply the filter with immediate effect

pyexcel.Sheet.filter

Sheet.filter(column_indices=None, row_indices=None)
Apply the filter with immediate effect

Transformation

Sheet.project(new_ordered_columns[, exclusion]) Rearrange the sheet.
Sheet.transpose() Rotate the data table by 90 degrees
Sheet.map(custom_function) Execute a function across all cells of the sheet
Sheet.region(topleft_corner, bottomright_corner) Get a rectangle shaped data out
Sheet.cut(topleft_corner, bottomright_corner) Get a rectangle shaped data out and clear them in posi-

tion
Sheet.paste(topleft_corner[, rows, columns]) Paste a rectangle shaped data after a position

pyexcel.Sheet.project

Sheet.project(new_ordered_columns, exclusion=False)
Rearrange the sheet.

Variables
• new_ordered_columns – new columns

• exclusion – to exclude named column or not. defaults to False

Example:

>>> sheet = Sheet(
... [["A", "B", "C"], [1, 2, 3], [11, 22, 33], [111, 222, 333]],
... name_columns_by_row=0)
>>> sheet.project(["B", "A", "C"])
pyexcel sheet:
+-----+-----+-----+
| B | A | C |
+=====+=====+=====+
| 2 | 1 | 3 |
+-----+-----+-----+
| 22 | 11 | 33 |
+-----+-----+-----+
| 222 | 111 | 333 |
+-----+-----+-----+
>>> sheet.project(["B", "C"])

(continues on next page)

2.10. API documentation 167

pyexcel, Release 0.7.3

(continued from previous page)

pyexcel sheet:
+-----+-----+
| B | C |
+=====+=====+
| 2 | 3 |
+-----+-----+
| 22 | 33 |
+-----+-----+
| 222 | 333 |
+-----+-----+
>>> sheet.project(["B", "C"], exclusion=True)
pyexcel sheet:
+-----+
| A |
+=====+
| 1 |
+-----+
| 11 |
+-----+
| 111 |
+-----+

pyexcel.Sheet.transpose

Sheet.transpose()

Rotate the data table by 90 degrees

Reference transpose()

pyexcel.Sheet.map

Sheet.map(custom_function)
Execute a function across all cells of the sheet

Example:

>>> import pyexcel as pe
>>> # Given a dictionary as the following
>>> data = {
... "1": [1, 2, 3, 4, 5, 6, 7, 8],
... "3": [1.25, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8],
... "5": [2, 3, 4, 5, 6, 7, 8, 9],
... "7": [1, '',]
... }
>>> sheet = pe.get_sheet(adict=data)
>>> sheet.row[1]
[1, 1.25, 2, 1]
>>> inc = lambda value: (float(value) if value != '' else 0)+1
>>> sheet.map(inc)
>>> sheet.row[1]
[2.0, 2.25, 3.0, 2.0]

168 Chapter 2. Support the project

pyexcel, Release 0.7.3

pyexcel.Sheet.region

Sheet.region(topleft_corner, bottomright_corner)
Get a rectangle shaped data out

Parameters
• topleft_corner (slice) – the top left corner of the rectangle

• bottomright_corner (slice) – the bottom right corner of the rectangle

pyexcel.Sheet.cut

Sheet.cut(topleft_corner, bottomright_corner)
Get a rectangle shaped data out and clear them in position

Parameters
• topleft_corner (slice) – the top left corner of the rectangle

• bottomright_corner (slice) – the bottom right corner of the rectangle

pyexcel.Sheet.paste

Sheet.paste(topleft_corner, rows=None, columns=None)
Paste a rectangle shaped data after a position

Parameters
topleft_corner (slice) – the top left corner of the rectangle

example:

>>> import pyexcel as pe
>>> data = [
... # 0 1 2 3 4 5 6
... [1, 2, 3, 4, 5, 6, 7], # 0
... [21, 22, 23, 24, 25, 26, 27],
... [31, 32, 33, 34, 35, 36, 37],
... [41, 42, 43, 44, 45, 46, 47],
... [51, 52, 53, 54, 55, 56, 57] # 4
...]
>>> s = pe.Sheet(data)
>>> # cut 1<= row < 4, 1<= column < 5
>>> data = s.cut([1, 1], [4, 5])
>>> s.paste([4,6], rows=data)
>>> s
pyexcel sheet:
+----+----+----+----+----+----+----+----+----+----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | |
+----+----+----+----+----+----+----+----+----+----+
| 21 | | | | | 26 | 27 | | | |
+----+----+----+----+----+----+----+----+----+----+
| 31 | | | | | 36 | 37 | | | |
+----+----+----+----+----+----+----+----+----+----+
| 41 | | | | | 46 | 47 | | | |
+----+----+----+----+----+----+----+----+----+----+
| 51 | 52 | 53 | 54 | 55 | 56 | 22 | 23 | 24 | 25 |

(continues on next page)

2.10. API documentation 169

pyexcel, Release 0.7.3

(continued from previous page)

+----+----+----+----+----+----+----+----+----+----+
| | | | | | | 32 | 33 | 34 | 35 |
+----+----+----+----+----+----+----+----+----+----+
| | | | | | | 42 | 43 | 44 | 45 |
+----+----+----+----+----+----+----+----+----+----+
>>> s.paste([6,9], columns=data)
>>> s
pyexcel sheet:
+----+----+----+----+----+----+----+----+----+----+----+----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 21 | | | | | 26 | 27 | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 31 | | | | | 36 | 37 | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 41 | | | | | 46 | 47 | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| 51 | 52 | 53 | 54 | 55 | 56 | 22 | 23 | 24 | 25 | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | 32 | 33 | 34 | 35 | | |
+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | 42 | 43 | 44 | 22 | 32 | 42 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | | | | 23 | 33 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | | | | 24 | 34 | 44 |
+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | | | | 25 | 35 | 45 |
+----+----+----+----+----+----+----+----+----+----+----+----+

Save changes

Sheet.save_as(filename, **keywords) Save the content to a named file
Sheet.save_to_memory(file_type[, stream]) Save the content to memory
Sheet.save_to_database(session, table[, ...]) Save data in sheet to database table
Sheet.save_to_django_model(model[, ...]) Save to database table through django model

pyexcel.Sheet.save_as

Sheet.save_as(filename, **keywords)
Save the content to a named file

Keywords may vary depending on your file type, because the associated file type employs different library.

PARAMETERS
filename: a file path

library:
choose a specific pyexcel-io plugin for writing

renderer_library:
choose a pyexcel parser plugin for writing

170 Chapter 2. Support the project

pyexcel, Release 0.7.3

Parameters related to csv file format
for csv, fmtparams are accepted

delimiter :
field separator

lineterminator :
line terminator

encoding:
csv specific. Specify the file encoding the csv file. For example: encoding=’latin1’. Especially,
encoding=’utf-8-sig’ would add utf 8 bom header if used in renderer, or would parse a csv with utf brom
header used in parser.

escapechar :
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and
the quotechar if doublequote is False.

quotechar :
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to ‘”’

quoting :
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace :
When True, whitespace immediately following the delimiter is ignored. The default is False.

pep_0515_off :
When True in python version 3.6, PEP-0515 is turned on. The default is False

pyexcel.Sheet.save_to_memory

Sheet.save_to_memory(file_type, stream=None, **keywords)
Save the content to memory

Parameters
• file_type – any value of ‘csv’, ‘tsv’, ‘csvz’, ‘tsvz’, ‘xls’, ‘xlsm’, ‘xlsm’, ‘ods’

• stream – the memory stream to be written to. Note in Python 3, for csv and tsv format,
please pass an instance of StringIO. For xls, xlsx, and ods, an instance of BytesIO.

pyexcel.Sheet.save_to_database

Sheet.save_to_database(session, table, initializer=None, mapdict=None, auto_commit=True)
Save data in sheet to database table

Parameters
• session – database session

• table – a database table

• initializer – a initialization functions for your table

• mapdict – custom map dictionary for your data columns

• auto_commit – by default, data is auto committed.

2.10. API documentation 171

https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters

pyexcel, Release 0.7.3

pyexcel.Sheet.save_to_django_model

Sheet.save_to_django_model(model, initializer=None, mapdict=None, batch_size=None)
Save to database table through django model

Parameters
• model – a database model

• initializer – a initialization functions for your model

• mapdict – custom map dictionary for your data columns

• batch_size – a parameter to Django concerning the size for bulk insertion

2.10.2 Internal API reference
This is intended for developers and hackers of pyexcel.

Data sheet representation

In inheritance order from parent to child

Matrix(array) The internal representation of a sheet data.

pyexcel.internal.sheets.Matrix

class pyexcel.internal.sheets.Matrix(array)
The internal representation of a sheet data. Each element can be of any python types

__init__(array)
Constructor

The reason a deep copy was not made here is because the data sheet could be huge. It could be costly to
copy every cell to a new memory area :param list array: a list of arrays

Methods

__init__(array) Constructor
cell_value(row, column[, new_value]) Random access to table cells
clone()

column_at(index) Gets the data at the specified column
column_range() Utility function to get column range
columns() Returns a left to right column iterator
contains(predicate) Has something in the table
cut(topleft_corner, bottomright_corner) Get a rectangle shaped data out and clear them in po-

sition
delete_columns(column_indices) Delete columns by specified list of indices
delete_rows(row_indices) Deletes specified row indices
enumerate() Iterate cell by cell from top to bottom and from left

to right
extend_columns(columns) Inserts two dimensional data after the rightmost col-

umn
continues on next page

172 Chapter 2. Support the project

pyexcel, Release 0.7.3

Table 33 – continued from previous page
extend_columns_with_rows(rows) Rows were appended to the rightmost side
extend_rows(rows) Inserts two dimensional data after the bottom row
filter([column_indices, row_indices]) Apply the filter with immediate effect
format(formatter) Apply a formatting action for the whole sheet
get_array(**keywords) Get data in array format
get_bookdict(**keywords) Get data in bookdict format
get_csv(**keywords) Get data in csv format
get_csvz(**keywords) Get data in csvz format
get_dict(**keywords) Get data in dict format
get_fods(**__) fods getter is not defined.
get_handsontable(**keywords) Get data in handsontable format
get_handsontable_html(**keywords) Get data in handsontable.html format
get_html(**__) html getter is not defined.
get_internal_array() present internal array
get_ods(**keywords) Get data in ods format
get_pdf(**__) pdf getter is not defined.
get_queryset(**__) queryset getter is not defined.
get_records(**keywords) Get data in records format
get_svg(**keywords) Get data in svg format
get_texttable(**keywords) Get data in texttable format
get_tsv(**keywords) Get data in tsv format
get_tsvz(**keywords) Get data in tsvz format
get_url(**__) url getter is not defined.
get_xls(**keywords) Get data in xls format
get_xlsb(**__) xlsb getter is not defined.
get_xlsm(**keywords) Get data in xlsm format
get_xlsx(**keywords) Get data in xlsx format
map(custom_function) Execute a function across all cells of the sheet
number_of_columns() The number of columns
number_of_rows() The number of rows
paste(topleft_corner[, rows, columns]) Paste a rectangle shaped data after a position
plot([file_type]) Visualize the data
rcolumns() Returns a right to left column iterator
region(topleft_corner, bottomright_corner) Get a rectangle shaped data out
register_input(file_type[, instance_name, ...]) create custom attributes for each class
register_io(file_type[, instance_name, ...]) create custom attributes for each class
register_presentation(file_type[, ...]) create custom attributes for each class
reverse() Opposite to enumerate
row_at(index) Gets the data at the specified row
row_range() Utility function to get row range
rows() Returns a top to bottom row iterator
rrows() Returns a bottom to top row iterator
rvertical() Default iterator to go through each cell one by one

from rightmost column to leftmost row and from bot-
tom to top example.

save_as(filename, **keywords) Save the content to a named file
save_to_database(session, table[, ...]) Save data in sheet to database table
save_to_django_model(model[, initializer, ...]) Save to database table through django model
save_to_memory(file_type[, stream]) Save the content to memory
set_array(content, **keywords) Set data in array format
set_bookdict(content, **keywords) Set data in bookdict format
set_column_at(column_index, data_array[, ...]) Updates a column data range

continues on next page

2.10. API documentation 173

pyexcel, Release 0.7.3

Table 33 – continued from previous page
set_csv(content, **keywords) Set data in csv format
set_csvz(content, **keywords) Set data in csvz format
set_dict(content, **keywords) Set data in dict format
set_fods(content, **keywords) Set data in fods format
set_handsontable(_y, **_z) handsontable setter is not defined.
set_handsontable_html(_y, **_z) handsontable.html setter is not defined.
set_html(content, **keywords) Set data in html format
set_ods(content, **keywords) Set data in ods format
set_pdf(content, **keywords) Set data in pdf format
set_queryset(content, **keywords) Set data in queryset format
set_records(content, **keywords) Set data in records format
set_row_at(row_index, data_array) Update a row data range
set_svg(_y, **_z) svg setter is not defined.
set_texttable(_y, **_z) texttable setter is not defined.
set_tsv(content, **keywords) Set data in tsv format
set_tsvz(content, **keywords) Set data in tsvz format
set_url(content, **keywords) Set data in url format
set_xls(content, **keywords) Set data in xls format
set_xlsb(content, **keywords) Set data in xlsb format
set_xlsm(content, **keywords) Set data in xlsm format
set_xlsx(content, **keywords) Set data in xlsx format
to_array() Get an array out
transpose() Rotate the data table by 90 degrees
vertical() Default iterator to go through each cell one by one

from leftmost column to rightmost row and from top
to bottom example.

Attributes

array Get/Set data in/from array format
bookdict Get/Set data in/from bookdict format
csv Get/Set data in/from csv format
csvz Get/Set data in/from csvz format
dict Get/Set data in/from dict format
fods Set data in fods format
handsontable Get data in handsontable format
handsontable_html Get data in handsontable.html format
html Set data in html format
ods Get/Set data in/from ods format
pdf Set data in pdf format
queryset Set data in queryset format
records Get/Set data in/from records format
stream Return a stream in which the content is properly en-

coded
svg Get data in svg format
texttable Get data in texttable format
tsv Get/Set data in/from tsv format
tsvz Get/Set data in/from tsvz format
url Set data in url format
xls Get/Set data in/from xls format
xlsb Set data in xlsb format

continues on next page

174 Chapter 2. Support the project

pyexcel, Release 0.7.3

Table 34 – continued from previous page
xlsm Get/Set data in/from xlsm format
xlsx Get/Set data in/from xlsx format

SheetStream(name, payload) Memory efficient sheet representation
BookStream([sheets, filename, path]) Memory efficient book representation

pyexcel.internal.generators.SheetStream

class pyexcel.internal.generators.SheetStream(name, payload)
Memory efficient sheet representation

This class wraps around the data read from pyexcel-io. Comparing with pyexcel.Sheet, the instance of this
class does not load all data into memory. Hence it performs better when dealing with big data.

If you would like to do custom rendering for each row of the two dimensional data, you would need to pass a row
formatting/rendering function to the parameter “renderer” of pyexcel’s signature functions.

__init__(name, payload)

Methods

__init__(name, payload)

get_internal_array()

to_array() Simply return the generator

Attributes

array array attribute

pyexcel.internal.generators.BookStream

class pyexcel.internal.generators.BookStream(sheets=None, filename='memory', path=None)
Memory efficient book representation

Comparing with pyexcel.Book , the instace of this class uses pyexcel.generators.SheetStream as its
internal repesentation of sheet objects. Because SheetStream does not read data into memory, it is memory
efficient.

__init__(sheets=None, filename='memory', path=None)
Book constructor

Selecting a specific book according to filename extension :param OrderedDict/dict sheets: a dictionary of
data :param str filename: the physical file :param str path: the relative path or absolute path :param set
keywords: additional parameters to be passed on

2.10. API documentation 175

pyexcel, Release 0.7.3

Methods

__init__([sheets, filename, path]) Book constructor
load_from_sheets(sheets) Load content from existing sheets
number_of_sheets() Return the number of sheets
sheet_names()

to_dict() Get book data structure as a dictionary

Row representation

Row(matrix) Represent row of a matrix

pyexcel.internal.sheets.Row

class pyexcel.internal.sheets.Row(matrix)
Represent row of a matrix

Table 40: “example.csv”

1 2 3
4 5 6
7 8 9

Above column manipulation can be performed on rows similarly. This section will not repeat the same example
but show some advance usages.

>>> import pyexcel as pe
>>> data = [[1,2,3], [4,5,6], [7,8,9]]
>>> m = pe.internal.sheets.Matrix(data)
>>> m.row[0:2]
[[1, 2, 3], [4, 5, 6]]
>>> m.row[0:3] = [0, 0, 0]
>>> m.row[2]
[0, 0, 0]
>>> del m.row[0:2]
>>> m.row[0]
[0, 0, 0]

__init__(matrix)

Methods

__init__(matrix)

format([row_index, formatter, format_specs]) Format a row
get_converter(theformatter) return the actual converter or a built-in converter
select(indices) Delete row indices other than specified

176 Chapter 2. Support the project

pyexcel, Release 0.7.3

Column representation

Column(matrix) Represent columns of a matrix

pyexcel.internal.sheets.Column

class pyexcel.internal.sheets.Column(matrix)
Represent columns of a matrix

Table 43: “example.csv”

1 2 3
4 5 6
7 8 9

Let us manipulate the data columns on the above data matrix:

>>> import pyexcel as pe
>>> data = [[1,2,3], [4,5,6], [7,8,9]]
>>> m = pe.internal.sheets.Matrix(data)
>>> m.column[0]
[1, 4, 7]
>>> m.column[2] = [0, 0, 0]
>>> m.column[2]
[0, 0, 0]
>>> del m.column[1]
>>> m.column[1]
[0, 0, 0]
>>> m.column[2]
Traceback (most recent call last):

...
IndexError

__init__(matrix)

Methods

__init__(matrix)

format([column_index, formatter, format_specs]) Format a column
get_converter(theformatter) return the actual converter or a built-in converter
select(indices) Examples:

2.11 Developer’s guide

2.11.1 Developer’s guide
Development steps for code changes

1. git clone https://github.com/pyexcel/pyexcel.git

2. cd pyexcel

2.11. Developer’s guide 177

https://github.com/pyexcel/pyexcel.git

pyexcel, Release 0.7.3

Upgrade your setup tools and pip. They are needed for development and testing only:

1. pip install –upgrade setuptools pip

Then install relevant development requirements:

1. pip install -r rnd_requirements.txt # if such a file exists

2. pip install -r requirements.txt

3. pip install -r tests/requirements.txt

Once you have finished your changes, please provide test case(s), relevant documentation and update changelog.yml

ò Note

As to rnd_requirements.txt, usually, it is created when a dependent library is not released. Once the dependency is
installed (will be released), the future version of the dependency in the requirements.txt will be valid.

How to test your contribution

Although nose and doctest are both used in code testing, it is advisable that unit tests are put in tests. doctest is
incorporated only to make sure the code examples in documentation remain valid across different development releases.

On Linux/Unix systems, please launch your tests like this:

$ make

On Windows, please issue this command:

> test.bat

Before you commit

Please run:

$ make format

so as to beautify your code otherwise your build may fail your unit test.

2.11.2 How to log pyexcel
When developing source plugins, it becomes necessary to have log trace available. It helps find out what goes wrong
quickly.

The basic step would be to set up logging before pyexcel import statement.

import logging
import logging.config
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',

level=logging.DEBUG)

import pyexcel

And if you would use a complex configuration, you can use the following code.

178 Chapter 2. Support the project

pyexcel, Release 0.7.3

import logging
import logging.config
logging.config.fileConfig('log.conf')

import pyexcel

And then save the following content as log.conf in your directory:

[loggers]
keys=root, sources, renderers

[handlers]
keys=consoleHandler

[formatters]
keys=custom

[logger_root]
level=INFO
handlers=consoleHandler

[logger_sources]
level=DEBUG
handlers=consoleHandler
qualname=pyexcel.sources.factory
propagate=0

[logger_renderers]
level=DEBUG
handlers=consoleHandler
qualname=pyexcel.renderers.factory
propagate=0

[handler_consoleHandler]
class=StreamHandler
level=DEBUG
formatter=custom
args=(sys.stdout,)

[formatter_custom]
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
datefmt=

Disable logging

In unit testing and django framework, you will find the `lml` logging even you have not
explicitly wanted them.

You can suppress them:

2.11. Developer’s guide 179

pyexcel, Release 0.7.3

import logging
logging.getLogger('lml.plugin').propagate = False

Here is a list of possible modules: `lml.plugin` and `lml.loader`.

2.11.3 Packaging with PyInstaller
With pyexcel v0.5.0, the way to package it has been changed because it uses lml for all plugins.

And you need to do the same for pyexcel-io plugins too.

Built-in plugins of pyexcel

In order to package every built-in plugins of pyexcel-io, you need to specify:

--hidden-import pyexcel.plugins.renderers.sqlalchemy
--hidden-import pyexcel.plugins.renderers.django
--hidden-import pyexcel.plugins.renderers.excel
--hidden-import pyexcel.plugins.renderers._texttable
--hidden-import pyexcel.plugins.parsers.excel
--hidden-import pyexcel.plugins.parsers.sqlalchemy
--hidden-import pyexcel.plugins.sources.http
--hidden-import pyexcel.plugins.sources.file_input
--hidden-import pyexcel.plugins.sources.memory_input
--hidden-import pyexcel.plugins.sources.file_output
--hidden-import pyexcel.plugins.sources.output_to_memory
--hidden-import pyexcel.plugins.sources.pydata.bookdict
--hidden-import pyexcel.plugins.sources.pydata.dictsource
--hidden-import pyexcel.plugins.sources.pydata.arraysource
--hidden-import pyexcel.plugins.sources.pydata.records
--hidden-import pyexcel.plugins.sources.django
--hidden-import pyexcel.plugins.sources.sqlalchemy
--hidden-import pyexcel.plugins.sources.querysets

2.11.4 How to write a plugin for pyexcel

ò Note

Under writing. Stay tuned.

There are three types of plugins for pyexcel: data parser, data renderer and data source.

Tutorial

Let me walk you through the process of creating pyexcel-pdfr package.

Prerequisites:

1. pip install moban yehua

2. git clone https://github.com/moremoban/setupmobans.git # generic setup

3. git clone https://github.com/pyexcel/pyexcel-commons.git

Let me assume that you have the work directory as:

180 Chapter 2. Support the project

http://pyexcel-io.readthedocs.io/en/latest/pyinstaller.html
https://github.com/moremoban/setupmobans.git
https://github.com/pyexcel/pyexcel-commons.git

pyexcel, Release 0.7.3

setupmobans pyexcel-commons

and YOUR_WORK_DIRECTORY points to the base directory for both.

And then please export an environment variable:

export YEHUA_FILE=$YOUR_WORK_DIRECTORY/pyexcel-commons/yehua/yehua.yml

Now let’s get started.

Step 1

Call yehua to get the basic scaffolding:

$ yehua
Yehua will walk you through creating a pyexcel package.
Press ^C to quit at any time.

What is your project name? pyexcel-pdfr
What is the description? parses tables in pdf file as tabular data
What is project type?
1. pyexcel plugins
2. command line interface
3. python's C externsion
(1,2,3): 1
What is the nick name? pdf
$

Step 2

Call moban to inflate all project files:

$ cd pyexcel-pdfr/
$ ln -s ../pyexcel-commons/ commons
$ ln -s ../setupmobans/ setupmobans
$ moban
Templating README.rst to README.rst
Templating setup.py to setup.py
Templating requirements.txt to requirements.txt
Templating NEW_BSD_LICENSE.jj2 to LICENSE
Templating MANIFEST.in.jj2 to MANIFEST.in
Templating tests/requirements.txt to tests/requirements.txt
Templating test.script.jj2 to test.sh
Templating test.script.jj2 to test.bat
Templating travis.yml.jj2 to .travis.yml
Templating gitignore.jj2 to .gitignore
Templating docs/source/conf.py.jj2 to docs/source/conf.py

Step 3 - Coding

Please put your code in pyexcel_pdfr

2.11. Developer’s guide 181

pyexcel, Release 0.7.3

2.12 Change log

2.12.1 What’s breaking in 0.7.0
The following statements will stop working:

import pyexcel.ext.ods
import pyexcel.ext.ods3
import pyexcel.ext.text
import pyexcel.ext.xls
import pyexcel.ext.xlsx

as they were deprecated since v0.2.2

2.12.2 What’s breaking in 0.6.0
In the following statements:

sheet_a = sheet.row + rows
sheet_b = sheet.column + columns
book = sheet_a + sheet_b

sheet_a and sheet_b will no longer have access to the data of sheet. book will no longer have access to the data of
sheet_a and sheet_b.

Under Hyrum’s Law, this enhancement in 0.6.0 will cause breakage otherwise.

2.12.3 What’s breaking in 0.5.9
pyexcel.Sheet.to_records() returns a generator instead of a list of dictionaries.

2.12.4 Migrate away from 0.4.3
get_{{file_type}}_stream functions from pyexcel.Sheet and pyexcel.Book were introduced since 0.4.3 but
were removed since 0.4.4. Please be advised to use save_to_memory functions, Sheet.io.{{file_type}} or
Book.io.{{file_type}}.

2.12.5 Migrate from 0.2.x to 0.3.0+
Filtering and formatting behavior of pyexcel.Sheet are simplified. Soft filter and soft formatter are removed. Extra
classes such as iterator, formatter, filter are removed.

Most of formatting tasks could be achieved using format() and map(). and Filtering with filter(). Formatting
and filtering on row and/or column can be found with row() and column()

1. Updated filter function

There is no alternative to replace the following code:

sheet.filter(pe.OddRowFilter())

You will need to remove odd rows by yourself:

>>> import pyexcel as pe
>>> data = [
... ['1'],

(continues on next page)

182 Chapter 2. Support the project

pyexcel, Release 0.7.3

(continued from previous page)

... ['2'],

... ['3'],

...]
>>> sheet = pe.Sheet(data)
>>> to_remove = []
>>> for index in sheet.row_range():
... if index % 2 == 0:
... to_remove.append(index)
>>> sheet.filter(row_indices=to_remove)
>>> sheet
pyexcel sheet:
+---+
| 2 |
+---+

Or, you could do this:

>>> data = [
... ['1'],
... ['2'],
... ['3'],
...]
>>> sheet = pe.Sheet(data)
>>> def odd_filter(row_index, _):
... return row_index % 2 == 0
>>> del sheet.row[odd_filter]
>>> sheet
pyexcel sheet:
+---+
| 2 |
+---+

And the same applies to EvenRowFilter, OddColumnFilter, EvenColumnFilter.

2. Updated format function

2.1 Replacement of sheetformatter

The following formatting code:

sheet.apply_formatter(pe.sheets.formatters.SheetFormatter(int))

can be replaced by:

sheet.format(int)

2.2 Replacement of row formatters

The following code:

row_formatter = pe.sheets.formatters.RowFormatter([1, 2], str)
sheet.add_formatter(row_formatter)

can be replaced by:

2.12. Change log 183

pyexcel, Release 0.7.3

sheet.row.format([1, 2], str)

2.3 Replacement of column formatters

The following code:

f = NamedColumnFormatter(["Column 1", "Column 3"], str)
sheet.apply_formatter(f)

can be replaced by:

sheet.column.format(["Column 1", "Column 3"], str)

2.12.6 Migrate from 0.2.1 to 0.2.2+
1. Explicit imports, no longer needed

Please forget about these statements:

import pyexcel.ext.xls
import pyexcel.ext.ods
import pyexcel.ext.xlsx

They are no longer needed. As long as you have pip-installed them, they will be auto-loaded. However, if you do not
want some of the plugins, please use pip to uninstall them.

What if you have your code as it is? No harm but a few warnings shown:

Deprecated usage since v0.2.2! Explicit import is no longer required. pyexcel.ext.ods is␣
→˓auto imported.

2. Invalid environment marker: platform_python_implementation==”PyPy”

Yes, it is a surprise. Please upgrade setuptools in your environment:

pip install --upgrade setuptools

At the time of writing, setuptools (18.0.1) or setuptools-21.0.0-py2.py3-none-any.whl is installed on author’s computer
and worked.

3. How to keep both pyexcel-xls and pyexcel-xlsx

As in Issue 20, pyexcel-xls was used for xls and pyexcel-xlsx had to be used for xlsx. Both must co-exist due to
requirements. The workaround would failed when auto-import are enabled in v0.2.2. Hence, user of pyexcel in this
situation shall use ‘library’ parameter to all signature functions, to instruct pyexcel to use a named library for each
function call.

4. pyexcel.get_io is no longer exposed

pyexcel.get_io was passed on from pyexcel-io. However, it is no longer exposed. Please use pyex-
cel_io.manager.RWManager.get_io if you have to.

You are likely to use pyexcel.get_io when you do pyexcel.Sheet.save_to_memory() or pyexcel.Book.
save_to_memory() where you need to put in a io stream. But actually, with latest code, you could put in a None.

184 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/20

pyexcel, Release 0.7.3

2.12.7 Migrate from 0.1.x to 0.2.x
1. “Writer” is gone, Please use save_as.

Here is a piece of legacy code:

w = pyexcel.Writer("afile.csv")
data=[['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 1.1, 1]]
w.write_array(table)
w.close()

The new code is:

>>> data=[['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 1.1, 1]]
>>> pyexcel.save_as(array=data, dest_file_name="afile.csv")

Here is another piece of legacy code:

content = {
"X": [1,2,3,4,5],
"Y": [6,7,8,9,10],
"Z": [11,12,13,14,15],

}
w = pyexcel.Writer("afile.csv")
w.write_dict(self.content)
w.close()

The new code is:

>>> content = {
... "X": [1,2,3,4,5],
... "Y": [6,7,8,9,10],
... "Z": [11,12,13,14,15],
... }
>>> pyexcel.save_as(adict=content, dest_file_name="afile.csv")

Here is yet another piece of legacy code:

data = [
[1, 2, 3],
[4, 5, 6]

]
io = StringIO()
w = pyexcel.Writer(("csv",io))
w.write_rows(data)
w.close()

The new code is:

>>> data = [
... [1, 2, 3],
... [4, 5, 6]
...]
>>> io = pyexcel.save_as(dest_file_type='csv', array=data)
>>> for line in io.readlines():

(continues on next page)

2.12. Change log 185

pyexcel, Release 0.7.3

(continued from previous page)

... print(line.rstrip())
1,2,3
4,5,6

2. “BookWriter” is gone. Please use save_book_as.

Here is a piece of legacy code:

import pyexcel
content = {

"Sheet1": [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]],
"Sheet2": [[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6]],
"Sheet3": [[u'X', u'Y', u'Z'], [1, 4, 7], [2, 5, 8], [3, 6, 9]]

}
w = pyexcel.BookWriter("afile.csv")
w.write_book_from_dict(content)
w.close()

The replacement code is:

>>> import pyexcel
>>> content = {
... "Sheet1": [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]],
... "Sheet2": [[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6]],
... "Sheet3": [[u'X', u'Y', u'Z'], [1, 4, 7], [2, 5, 8], [3, 6, 9]]
... }
>>> pyexcel.save_book_as(bookdict=content, dest_file_name="afile.csv")

2.12.8 Change log
0.7.3 - 12.04.2025

Fixed
1. #263: support pathlib from python 3.4

2. #267: better error message for file_name

0.7.2 - 23.03.2025

Fixed
1. #270: apenddoc breaks interpreter optimization

2. #274: Replace deprecated imp module with importlib - enforced pyexcel’s dependency on lml>=0.2.0. This will
have an implication for linux distribution makers for pyexcel. However, this is a reaction to the potential removal
of __import__ syntax.

0.7.1 - 11.09.2024

Fixed
1. #272: remove chardet as a requirement

Updated
1. various typos and linted the code

186 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/263
https://github.com/pyexcel/pyexcel/issues/267
https://github.com/pyexcel/pyexcel/issues/270
https://github.com/pyexcel/pyexcel/issues/274
https://github.com/pyexcel/pyexcel/issues/272

pyexcel, Release 0.7.3

0.7.0 - 12.2.2022

Fixed
1. #250: RecursionError raised on deepcopy of a sheet

Updated
1. #255: pyexcel.get_array documentation page seems to be a copy of pyexcel.get_sheet

Removed
1. #249: drop the support for dummy import statements pyexcel.ext.*

0.6.7 - 12.09.2021

Updated
1. #243: fix small typo.

2. add chardet as explicit dependency

0.6.6 - 14.11.2020

Updated
1. #233: dynamically resize the table matrix on set_value. sheet[‘AA1’] = ‘test’ will work in this release.

0.6.5 - 8.10.2020

Updated
1. update queryset source to work with pyexcel-io 0.6.0

0.6.4 - 18.08.2020

Updated
1. #219: book created from dict no longer discards order.

0.6.3 - 01.08.2020

fixed
1. #214: remove leading and trailing whitespace for column names

removed
1. python 2 compatibility have been permanently removed.

0.6.2 - 8.06.2020

fixed
1. #109: Control the column order when write the data output

0.6.1 - 02.05.2020

fixed
1. #203: texttable was dropped out in 0.6.0 as compulsary dependency. end user may experience it when a

sheet/table is printed in a shell. otherwise, new user of pyexcel won’t see it. As of release date, no issues
were created

2.12. Change log 187

https://github.com/pyexcel/pyexcel/issues/250
https://github.com/pyexcel/pyexcel/issues/255
https://github.com/pyexcel/pyexcel/issues/249
https://github.com/pyexcel/pyexcel/issues/243
https://github.com/pyexcel/pyexcel/issues/233
https://github.com/pyexcel/pyexcel/issues/219
https://github.com/pyexcel/pyexcel/issues/214
https://github.com/pyexcel/pyexcel/issues/109
https://github.com/pyexcel/pyexcel/issues/203

pyexcel, Release 0.7.3

0.6.0 - 21.04.2020

updated
1. #199: += in place; = + shall return new instance

2. #195: documentation update. however small is welcome

removed
1. Dropping the test support for python version lower than 3.6. v0.6.0 should work with python 2.7 but is not

guaranteed to work. Please upgrade to python 3.6+.

0.5.15 - 07.07.2019

updated
1. #185: fix a bug with http data source. The real fix lies in pyexcel-io v0.5.19. this release just put the version

requirement in.

0.5.14 - 12.06.2019

updated
1. #182: support dest_force_file_type on save_as and save_book_as

0.5.13 - 12.03.2019

updated
1. #176: get_sheet {IndexError}list index out of range // XLSX can’t be opened

0.5.12 - 25.02.2019

updated
1. #174: include examples in tarbar

0.5.11 - 22.02.2019

updated
1. #169: remove pyexcel-handsontalbe in test

2. add tests, and docs folder in distribution

0.5.10 - 3.12.2018

updated
1. #157: Please use scan_plugins_regex, which lml 0.7 complains about

2. updated dependency on pyexcel-io to 0.5.11

0.5.9.1 - 30.08.2018

updated
1. to require pyexcel-io 0.5.9.1 and use lml at least version 0.0.2

188 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/199
https://github.com/pyexcel/pyexcel/issues/195
https://github.com/pyexcel/pyexcel/issues/185
https://github.com/pyexcel/pyexcel/issues/182
https://github.com/pyexcel/pyexcel/issues/176
https://github.com/pyexcel/pyexcel/issues/174
https://github.com/pyexcel/pyexcel/issues/169
https://github.com/pyexcel/pyexcel/issues/157

pyexcel, Release 0.7.3

0.5.9 - 30.08.2018

added
1. support __len__. len(book) returns the number of sheets and len(sheet) returns the number of rows

2. #144: memory-efficient way to read sheet names.

3. #148: force_file_type is introduced. When reading a file on a disk, this parameter allows you to choose a reader.
i.e. csv reader for a text file. xlsx reader for a xlsx file but with .blob file suffix.

4. finally, pyexcel got import pyexcel.__version__

updated
1. Sheet.to_records() returns a generator now, saving memory

2. #115, Fix set membership test to run faster in python2

3. #140, Direct writes to cells yield weird results

0.5.8 - 26.03.2018

added
1. #125, sort book sheets

updated
1. #126, dest_sheet_name in save_as will set the sheet name in the output

2. #115, Fix set membership test to run faster in python2

0.5.7 - 11.01.2018

added
1. pyexcel-io#46, expose bulk_save to developer.

0.5.6 - 23.10.2017

removed
1. #105, remove gease from setup_requires, introduced by 0.5.5.

2. removed testing against python 2.6

3. #103, include LICENSE file in MANIFEST.in, meaning LICENSE file will appear in the released tar ball.

0.5.5 - 20.10.2017

removed
1. #105, remove gease from setup_requires, introduced by 0.5.5.

2. removed testing against python 2.6

3. #103, include LICENSE file in MANIFEST.in, meaning LICENSE file will appear in the released tar ball.

0.5.4 - 27.09.2017

fixed
1. #100, Sheet.to_dict() gets out of range error because there is only one row.

updated

2.12. Change log 189

https://github.com/pyexcel/pyexcel/issues/144
https://github.com/pyexcel/pyexcel/issues/148
https://github.com/pyexcel/pyexcel/issues/115
https://github.com/pyexcel/pyexcel/issues/140
https://github.com/pyexcel/pyexcel/issues/125
https://github.com/pyexcel/pyexcel/issues/126
https://github.com/pyexcel/pyexcel/issues/115
https://github.com/pyexcel/pyexcel-io/issues/46
https://github.com/pyexcel/pyexcel/issues/105
https://github.com/pyexcel/pyexcel/issues/103
https://github.com/pyexcel/pyexcel/issues/105
https://github.com/pyexcel/pyexcel/issues/103
https://github.com/pyexcel/pyexcel/issues/100

pyexcel, Release 0.7.3

1. Updated the baseline of pyexcel-io to 0.5.1.

0.5.3 - 01-08-2017

added
1. #95, respect the order of records in iget_records, isave_as and save_as.

2. #97, new feature to allow intuitive initialization of pyexcel.Book.

0.5.2 - 26-07-2017

Updated
1. embeded the enabler for pyexcel-htmlr. http source does not support text/html as mime type.

0.5.1 - 12.06.2017

Updated
1. support saving SheetStream and BookStream to database targets. This is needed for pyexcel-webio and its down-

stream projects.

0.5.0 - 19.06.2017

Added
1. Sheet.top() and Sheet.top_left() for data browsing

2. add html as default rich display in Jupyter notebook when pyexcel-text and pyexcel-chart is installed

3. add svg as default rich display in Jupyter notebook when pyexcel-chart and one of its implementation
plugin(pyexcel-pygal, etc.) are is installed

4. new dictionary source supported: a dictionary of key value pair could be read into a sheet.

5. added dynamic external plugin loading. meaning if a pyexcel plugin is installed, it will be loaded implicitly. And
this change would remove unnecessary info log for those who do not use pyexcel-text and pyexcel-gal

6. save_book_as before 0.5.0 becomes isave_book_as and save_book_as in 0.5.0 convert BookStream to Book
before saving.

7. #83, file closing mechanism is enfored. free_resource is added and it should be called when iget_array,
iget_records, isave_as and/or isave_book_as are used.

Updated
1. array is passed to pyexcel.Sheet as reference. it means your array data will be modified.

Removed
1. pyexcel.Writer and pyexcel.BookWriter were removed

2. pyexcel.load_book_from_sql and pyexcel.load_from_sql were removed

3. pyexcel.deprecated.load_from_query_sets, pyexcel.deprecated.load_book_from_django_models and pyex-
cel.deprecated.load_from_django_model were removed

4. Removed plugin loading code and lml is used instead

190 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/95
https://github.com/pyexcel/pyexcel/issues/97
https://github.com/pyexcel/pyexcel/issues/83

pyexcel, Release 0.7.3

0.4.5 - 17.03.2017

Updated
1. #80: remove pyexcel-chart import from v0.4.x

0.4.4 - 06.02.2017

Updated
1. #68: regression save_to_memory() should have returned a stream instance which has been reset to zero if possi-

ble. The exception is sys.stdout, which cannot be reset.

2. #74: Not able to handle decimal.Decimal

Removed
1. remove get_{{file_type}}_stream functions from pyexcel.Sheet and pyexcel.Book introduced since 0.4.3.

0.4.3 - 26.01.2017

Added
1. ‘.stream’ attribute are attached to ~pyexcel.Sheet and ~pyexcel.Book to get direct access the underneath stream

in responding to file type attributes, such as sheet.xls. it helps provide a custom stream to external world, for
example, Sheet.stream.csv gives a text stream that contains csv formatted data. Book.stream.xls returns a xls
format data in a byte stream.

Updated
1. Better error reporting when an unknown parameters or unsupported file types were given to the signature func-

tions.

0.4.2 - 17.01.2017

Updated
1. Raise exception if the incoming sheet does not have column names. In other words, only sheet with column

names could be saved to database. sheet with row names cannot be saved. The alternative is to transpose the
sheet, then name_columns_by_row and then save.

2. fix iget_records where a non-uniform content should be given, e.g. [[“x”, “y”], [1, 2], [3]], some record would
become non-uniform, e.g. key ‘y’ would be missing from the second record.

3. skip_empty_rows is applicable when saving a python data structure to another data source. For example,
if your array contains a row which is consisted of empty string, such as [‘’, ‘’, ‘’ . . . ‘’], please specify
skip_empty_rows=False in order to preserve it. This becomes subtle when you try save a python dictionary
where empty rows is not easy to be spotted.

4. #69: better documentation for save_book_as.

0.4.1 - 23.12.2016

Updated
1. #68: regression save_to_memory() should have returned a stream instance.

0.4.0 - 22.12.2016

Added
1. Flask-Excel#19 allow sheet_name parameter

2.12. Change log 191

https://github.com/pyexcel/pyexcel/issues/80
https://github.com/pyexcel/pyexcel/issues/68
https://github.com/pyexcel/pyexcel/issues/74
https://github.com/pyexcel/pyexcel/issues/69
https://github.com/pyexcel/pyexcel/issues/68
https://github.com/pyexcel/Flask-Excel/issues/19

pyexcel, Release 0.7.3

2. pyexcel-xls#11 case-insensitive for file_type. xls and XLS are treated in the same way

Updated
1. #66: export_columns is ignored

2. Update dependency on pyexcel-io v0.3.0

0.3.3 - 07.11.2016

Updated
1. #63: cannot display empty sheet(hence book with empty sheet) as texttable

0.3.2 - 02.11.2016

Updated
1. #62: optional module import error become visible.

0.3.0 - 28.10.2016

Added:
1. file type setters for Sheet and Book, and its documentation

2. iget_records returns a generator for a list of records and should have better memory performance, especially
dealing with large csv files.

3. iget_array returns a generator for a list of two dimensional array and should have better memory performance,
especially dealing with large csv files.

4. Enable pagination support, and custom row renderer via pyexcel-io v0.2.3

Updated
1. Take isave_as out from save_as. Hence two functions are there for save a sheet as

2. #60: encode ‘utf-8’ if the console is of ascii encoding.

3. #59: custom row renderer

4. #56: set cell value does not work

5. pyexcel.transpose becomes pyexcel.sheets.transpose

6. iterator functions of pyexcel.Sheet were converted to generator functions

• pyexcel.Sheet.enumerate()

• pyexcel.Sheet.reverse()

• pyexcel.Sheet.vertical()

• pyexcel.Sheet.rvertical()

• pyexcel.Sheet.rows()

• pyexcel.Sheet.rrows()

• pyexcel.Sheet.columns()

• pyexcel.Sheet.rcolumns()

• pyexcel.Sheet.named_rows()

• pyexcel.Sheet.named_columns()

192 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel-xls/issues/11
https://github.com/pyexcel/pyexcel/issues/66
https://github.com/pyexcel/pyexcel/issues/63
https://github.com/pyexcel/pyexcel/issues/62
https://github.com/pyexcel/pyexcel/issues/60
https://github.com/pyexcel/pyexcel/issues/59
https://github.com/pyexcel/pyexcel/issues/56

pyexcel, Release 0.7.3

7. ~pyexcel.Sheet.save_to_memory and ~pyexcel.Book.save_to_memory return the actual content. No longer they
will return a io object hence you cannot call getvalue() on them.

Removed:
1. content and out_file as function parameters to the signature functions are no longer supported.

2. SourceFactory and RendererFactory are removed

3. The following methods are removed

• pyexcel.to_array

• pyexcel.to_dict

• pyexcel.utils.to_one_dimensional_array

• pyexcel.dict_to_array

• pyexcel.from_records

• pyexcel.to_records

4. pyexcel.Sheet.filter has been re-implemented and all filters were removed:

• pyexcel.filters.ColumnIndexFilter

• pyexcel.filters.ColumnFilter

• pyexcel.filters.RowFilter

• pyexcel.filters.EvenColumnFilter

• pyexcel.filters.OddColumnFilter

• pyexcel.filters.EvenRowFilter

• pyexcel.filters.OddRowFilter

• pyexcel.filters.RowIndexFilter

• pyexcel.filters.SingleColumnFilter

• pyexcel.filters.RowValueFilter

• pyexcel.filters.NamedRowValueFilter

• pyexcel.filters.ColumnValueFilter

• pyexcel.filters.NamedColumnValueFilter

• pyexcel.filters.SingleRowFilter

5. the following functions have been removed

• add_formatter

• remove_formatter

• clear_formatters

• freeze_formatters

• add_filter

• remove_filter

• clear_filters

• freeze_formatters

2.12. Change log 193

pyexcel, Release 0.7.3

6. pyexcel.Sheet.filter has been re-implemented and all filters were removed:

• pyexcel.formatters.SheetFormatter

0.2.5 - 31.08.2016

Updated:
1. #58: texttable should have been made as compulsory requirement

0.2.4 - 14.07.2016

Updated:
1. For python 2, writing to sys.stdout by pyexcel-cli raise IOError.

0.2.3 - 11.07.2016

Updated:
1. For python 3, do not seek 0 when saving to memory if sys.stdout is passed on. Hence, adding support for sys.stdin

and sys.stdout.

0.2.2 - 01.06.2016

Updated:
1. Explicit imports, no longer needed

2. Depends on latest setuptools 18.0.1

3. NotImplementedError will be raised if parameters to core functions are not supported, e.g.
get_sheet(cannot_find_me_option=”will be thrown out as NotImplementedError”)

0.2.1 - 23.04.2016

Added:
1. add pyexcel-text file types as attributes of pyexcel.Sheet and pyexcel.Book, related to #31

2. auto import pyexcel-text if it is pip installed

Updated:
1. code refactoring done for easy addition of sources.

2. bug fix #29, Even if the format is a string it is displayed as a float

3. pyexcel-text is no longer a plugin to pyexcel-io but to pyexcel.sources, see pyexcel-text#22

Removed:
1. pyexcel.presentation is removed. No longer the internal decorate @outsource is used. related to #31

0.2.0 - 17.01.2016

Updated
1. adopt pyexcel-io yield key word to return generator as content

2. pyexcel.save_as and pyexcel.save_book_as get performance improvements

194 Chapter 2. Support the project

https://github.com/pyexcel/pyexcel/issues/58
https://github.com/pyexcel/pyexcel/issues/31
https://github.com/pyexcel/pyexcel/issues/29
https://github.com/pyexcel/pyexcel-text/issues/22
https://github.com/pyexcel/pyexcel/issues/31

pyexcel, Release 0.7.3

0.1.7 - 03.07.2015

Added
1. Support pyramid-excel which does the database commit on its own.

0.1.6 - 13.06.2015

Added
1. get excel data from a http url

0.0.13 - 07.02.2015

Added
1. Support django

2. texttable as default renderer

0.0.12 - 25.01.2015

Added
1. Added sqlalchemy support

0.0.10 - 15.12.2015

Added
1. added csvz and tsvz format

0.0.4 - 12.10.2014

Updated
1. Support python 3

0.0.1 - 14.09.2014

Features:
1. read and write csv, ods, xls, xlsx and xlsm files(which are referred later as excel files)

2. various iterators for the reader

3. row and column filters for the reader

4. utilities to get array and dictionary out from excel files.

5. cookbok receipes for some common and simple usage of this library.

2.12. Change log 195

pyexcel, Release 0.7.3

196 Chapter 2. Support the project

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

197

pyexcel, Release 0.7.3

198 Chapter 3. Indices and tables

INDEX

Symbols
__getitem__() (pyexcel.Sheet method), 158
__init__() (pyexcel.Book method), 144
__init__() (pyexcel.Sheet method), 154
__init__() (pyexcel.internal.generators.BookStream

method), 175
__init__() (pyexcel.internal.generators.SheetStream

method), 175
__init__() (pyexcel.internal.sheets.Column method),

177
__init__() (pyexcel.internal.sheets.Matrix method),

172
__init__() (pyexcel.internal.sheets.Row method), 176

A
array (pyexcel.Sheet property), 162

B
Book (class in pyexcel), 144
bookdict (pyexcel.Book property), 147
BookStream (class in pyexcel.internal.generators), 175

C
cell_value() (pyexcel.Sheet method), 158
colnames (pyexcel.Sheet property), 161
Column (class in pyexcel.internal.sheets), 177
column_at() (pyexcel.Sheet method), 159
column_range() (pyexcel.Sheet method), 157
content (pyexcel.Sheet property), 157
csv (pyexcel.Book property), 148
csv (pyexcel.Sheet property), 163
csvz (pyexcel.Book property), 148
csvz (pyexcel.Sheet property), 163
cut() (pyexcel.Sheet method), 169

D
delete_columns() (pyexcel.Sheet method), 159
delete_named_column_at() (pyexcel.Sheet method),

160
delete_named_row_at() (pyexcel.Sheet method), 161
delete_rows() (pyexcel.Sheet method), 158

dict (pyexcel.Sheet property), 162

E
extend_columns() (pyexcel.Sheet method), 159
extend_rows() (pyexcel.Sheet method), 158
extract_a_sheet_from_a_book() (in module pyex-

cel), 143

F
filter() (pyexcel.Sheet method), 167
format() (pyexcel.Sheet method), 166
free_resources() (in module pyexcel), 125

G
get_array() (in module pyexcel), 92
get_book() (in module pyexcel), 108
get_book_dict() (in module pyexcel), 106
get_dict() (in module pyexcel), 95
get_records() (in module pyexcel), 101
get_sheet() (in module pyexcel), 109

I
iget_array() (in module pyexcel), 116
iget_book() (in module pyexcel), 114
iget_records() (in module pyexcel), 120
isave_as() (in module pyexcel), 131
isave_book_as() (in module pyexcel), 140

M
map() (pyexcel.Sheet method), 168
Matrix (class in pyexcel.internal.sheets), 172
merge_all_to_a_book() (in module pyexcel), 143
merge_csv_to_a_book() (in module pyexcel), 143

N
name_columns_by_row() (pyexcel.Sheet method), 160
name_rows_by_column() (pyexcel.Sheet method), 161
named_column_at() (pyexcel.Sheet method), 160
named_row_at() (pyexcel.Sheet method), 161
number_of_columns() (pyexcel.Sheet method), 157
number_of_rows() (pyexcel.Sheet method), 157

199

pyexcel, Release 0.7.3

number_of_sheets() (pyexcel.Book method), 147

O
ods (pyexcel.Book property), 150
ods (pyexcel.Sheet property), 165

P
paste() (pyexcel.Sheet method), 169
project() (pyexcel.Sheet method), 167

R
records (pyexcel.Sheet property), 162
region() (pyexcel.Sheet method), 169
Row (class in pyexcel.internal.sheets), 176
row_at() (pyexcel.Sheet method), 158
row_range() (pyexcel.Sheet method), 157
rownames (pyexcel.Sheet property), 160

S
save_as() (in module pyexcel), 125
save_as() (pyexcel.Book method), 151
save_as() (pyexcel.Sheet method), 170
save_book_as() (in module pyexcel), 137
save_to_database() (pyexcel.Book method), 152
save_to_database() (pyexcel.Sheet method), 171
save_to_django_model() (pyexcel.Sheet method), 172
save_to_django_models() (pyexcel.Book method),

152
save_to_memory() (pyexcel.Book method), 152
save_to_memory() (pyexcel.Sheet method), 171
set_column_at() (pyexcel.Sheet method), 159
set_named_column_at() (pyexcel.Sheet method), 160
set_named_row_at() (pyexcel.Sheet method), 161
set_row_at() (pyexcel.Sheet method), 158
Sheet (class in pyexcel), 153
sheet_names() (pyexcel.Book method), 147
SheetStream (class in pyexcel.internal.generators), 175
split_a_book() (in module pyexcel), 143
stream (pyexcel.Book property), 150
stream (pyexcel.Sheet property), 165

T
transpose() (pyexcel.Sheet method), 168
tsv (pyexcel.Book property), 148
tsv (pyexcel.Sheet property), 163
tsvz (pyexcel.Book property), 149
tsvz (pyexcel.Sheet property), 164

U
url (pyexcel.Book property), 147
url (pyexcel.Sheet property), 163

X
xls (pyexcel.Book property), 149
xls (pyexcel.Sheet property), 164
xlsm (pyexcel.Book property), 149
xlsm (pyexcel.Sheet property), 164
xlsx (pyexcel.Book property), 150
xlsx (pyexcel.Sheet property), 165

200 Index

	Introduction
	Support the project
	Installation
	Advanced usage :fire:
	Plugin shopping guide
	Usage
	Design
	Introduction
	Data models and data structures
	Data source
	Data format
	Data transformation
	Data manipulation
	Data transcoding
	Data visualization
	Examples of supported data structure

	Signature functions
	Import data into Python
	Four data access functions
	Two pyexcel functions

	Export data from Python
	Data transportation/transcoding

	Architecture
	What is loose coupling?

	New tutorial
	One liners
	Read from the excel files
	Get a list of dictionaries
	Get two dimensional array
	Get a dictionary
	Get a dictionary of two dimensional array

	Write data
	Export an array
	Export a list of dictionaries
	Export a dictionary of single key value pair
	Export a dictionary of single dimensonal array
	Export a dictionary of two dimensional array as a book

	Transcoding
	Excel book merge and split operation in one line
	Merge all excel files in directory into a book where each file become a sheet
	Split a book into single sheet files
	Extract just one sheet from a book

	Stream APIs for big file : A set of two liners
	Two liners for get data from big excel files
	Get a list of dictionaries
	Get two dimensional array

	Data export in one liners
	Export an array
	Export a list of dictionaries
	Export a dictionary of single key value pair
	Export a dictionary of single dimensonal array
	Export a dictionary of two dimensional array as a book

	File format transcoding on one line

	For web developer
	Read any supported excel and respond its content in json
	Write to memory and respond to download

	Pyexcel data renderers
	View pyexcel data in ndjson and other formats
	View the pyexcel data in a browser
	Include excel data in your python documentation
	Draw charts from your excel data
	Gantt chart visualization for your excel data

	Sheet
	Random access
	Data manipulation
	Column manipulation
	Remove one column of a data file
	Append more columns to a data file
	Cherry pick some columns to be removed
	What if the headers are in a different row
	Row manipulation

	Formatting
	Convert a column of numbers to strings
	Cleanse the cells in a spread sheet

	Data filtering
	Filter out some data
	Save the data
	How to filter out empty rows in my sheet?

	Book
	Get content
	Set content
	Access to individual sheets
	Merge excel books
	Manipulate individual sheets

	merge sheets into a single sheet
	How do I read a book, process it and save to a new book
	What would happen if I save a multi sheet book into “csv” file
	After I have saved my multiple sheet book in csv format, how do I get them back

	Working with databases
	How to import an excel sheet to a database using SQLAlchemy

	Old tutorial
	Work with excel files
	Open a csv file
	Add a new row to an existing file
	Update an existing row to an existing file
	Add a new column to an existing file
	Update an existing column to an existing file

	Work with excel files in memory
	file type as its attributes
	Read any supported excel and respond its content in json
	Write to memory and respond to download
	Relevant packages

	Sheet: Data conversion
	How to obtain records from an excel sheet
	How to save an python array as an excel file
	How to save an python array as a csv file with special delimiter
	How to get a dictionary from an excel sheet
	How to obtain a dictionary from a multiple sheet book
	How to save a dictionary of two dimensional array as an excel file
	How to import an excel sheet to a database using SQLAlchemy
	How to open an xls file and save it as csv
	How to open an xls file and save it as xlsx
	How to open a xls multiple sheet excel book and save it as csv

	Dot notation for data source
	For sheet
	Get content
	Set content

	For book
	Get content
	Set content

	Getters and Setters

	Read partial data
	Why did not I see above benefit?
	Formatting while transcoding a big data file

	Sheet: Data Access
	Iterate a csv file
	Random access to individual cell
	Random access to rows and columns
	Use custom names instead of index
	Reading a single sheet excel file
	Read the sheet as a dictionary
	Can I get an array of dictionaries per each row?

	Writing a single sheet excel file
	Write multiple sheet excel file
	Read multiple sheet excel file
	Work with data series in a single sheet
	Play with data

	Sheet: Data manipulation
	Column manipulation
	Remove one column of a data file

	Append more columns to a data file
	Cherry pick some columns to be removed

	What if the headers are in a different row
	Row manipulation

	Sheet: Data filtering
	Filter out some data
	Save the data
	How to filter out empty rows in my sheet?

	Sheet: Formatting
	Convert a column of numbers to strings
	Cleanse the cells in a spread sheet

	Book: Sheet operations
	Access to individual sheets
	Merge excel books
	Manipulate individual sheets
	merge sheets into a single sheet

	How do I read a book, process it and save to a new book
	What would happen if I save a multi sheet book into “csv” file
	After I have saved my multiple sheet book in csv format, how do I get them back

	Cook book
	Recipes
	Update one column of a data file
	Update one row of a data file
	Merge two files into one
	Select candidate columns of two files and form a new one
	Merge two files into a book where each file become a sheet
	Merge all excel files in directory into a book where each file become a sheet
	Split a book into single sheet files
	Extract just one sheet from a book

	Loading from other sources
	Get back into pyexcel
	list
	dict
	records
	book dict
	How to load a sheet from a url
	For sheet

	Get content
	For book

	Real world cases
	Questions and Answers
	How to inject csv data to database
	Problem definition
	Pyexcel solution

	API documentation
	API Reference
	Signature functions
	Obtaining data from excel file
	pyexcel.get_array
	pyexcel.get_dict
	pyexcel.get_records
	pyexcel.get_book_dict
	pyexcel.get_book
	pyexcel.get_sheet
	pyexcel.iget_book
	pyexcel.iget_array
	pyexcel.iget_records
	pyexcel.free_resources

	Saving data to excel file
	pyexcel.save_as
	pyexcel.isave_as
	pyexcel.save_book_as
	pyexcel.isave_book_as
	auto_detect_int
	auto_detect_float
	auto_detect_datetime
	library

	Cookbook
	pyexcel.merge_csv_to_a_book
	pyexcel.merge_all_to_a_book
	pyexcel.split_a_book
	pyexcel.extract_a_sheet_from_a_book

	Book
	Constructor
	pyexcel.Book

	Attribute
	pyexcel.Book.number_of_sheets
	pyexcel.Book.sheet_names

	Conversions
	pyexcel.Book.bookdict
	pyexcel.Book.url
	pyexcel.Book.csv
	pyexcel.Book.tsv
	pyexcel.Book.csvz
	pyexcel.Book.tsvz
	pyexcel.Book.xls
	pyexcel.Book.xlsm
	pyexcel.Book.xlsx
	pyexcel.Book.ods
	pyexcel.Book.stream

	Save changes
	pyexcel.Book.save_as
	pyexcel.Book.save_to_memory
	pyexcel.Book.save_to_database
	pyexcel.Book.save_to_django_models

	Sheet
	Constructor
	pyexcel.Sheet

	Attributes
	pyexcel.Sheet.content
	pyexcel.Sheet.number_of_rows
	pyexcel.Sheet.number_of_columns
	pyexcel.Sheet.row_range
	pyexcel.Sheet.column_range

	Cell access
	pyexcel.Sheet.cell_value
	pyexcel.Sheet.__getitem__

	Row access
	pyexcel.Sheet.row_at
	pyexcel.Sheet.set_row_at
	pyexcel.Sheet.delete_rows
	pyexcel.Sheet.extend_rows

	Column access
	pyexcel.Sheet.column_at
	pyexcel.Sheet.set_column_at
	pyexcel.Sheet.delete_columns
	pyexcel.Sheet.extend_columns

	Data series
	Any column as row name
	pyexcel.Sheet.name_columns_by_row
	pyexcel.Sheet.rownames
	pyexcel.Sheet.named_column_at
	pyexcel.Sheet.set_named_column_at
	pyexcel.Sheet.delete_named_column_at
	Any row as column name
	pyexcel.Sheet.name_rows_by_column
	pyexcel.Sheet.colnames
	pyexcel.Sheet.named_row_at
	pyexcel.Sheet.set_named_row_at
	pyexcel.Sheet.delete_named_row_at

	Conversion
	pyexcel.Sheet.array
	pyexcel.Sheet.records
	pyexcel.Sheet.dict
	pyexcel.Sheet.url
	pyexcel.Sheet.csv
	pyexcel.Sheet.tsv
	pyexcel.Sheet.csvz
	pyexcel.Sheet.tsvz
	pyexcel.Sheet.xls
	pyexcel.Sheet.xlsm
	pyexcel.Sheet.xlsx
	pyexcel.Sheet.ods
	pyexcel.Sheet.stream

	Formatting
	pyexcel.Sheet.format

	Filtering
	pyexcel.Sheet.filter

	Transformation
	pyexcel.Sheet.project
	pyexcel.Sheet.transpose
	pyexcel.Sheet.map
	pyexcel.Sheet.region
	pyexcel.Sheet.cut
	pyexcel.Sheet.paste

	Save changes
	pyexcel.Sheet.save_as
	pyexcel.Sheet.save_to_memory
	pyexcel.Sheet.save_to_database
	pyexcel.Sheet.save_to_django_model

	Internal API reference
	Data sheet representation
	pyexcel.internal.sheets.Matrix
	pyexcel.internal.generators.SheetStream
	pyexcel.internal.generators.BookStream

	Row representation
	pyexcel.internal.sheets.Row

	Column representation
	pyexcel.internal.sheets.Column

	Developer’s guide
	Developer’s guide
	How to test your contribution
	Before you commit

	How to log pyexcel
	Packaging with PyInstaller
	Built-in plugins of pyexcel

	How to write a plugin for pyexcel
	Tutorial
	Step 1
	Step 2
	Step 3 - Coding

	Change log
	What’s breaking in 0.7.0
	What’s breaking in 0.6.0
	What’s breaking in 0.5.9
	Migrate away from 0.4.3
	Migrate from 0.2.x to 0.3.0+
	1. Updated filter function
	2. Updated format function
	2.1 Replacement of sheetformatter
	2.2 Replacement of row formatters
	2.3 Replacement of column formatters

	Migrate from 0.2.1 to 0.2.2+
	1. Explicit imports, no longer needed
	2. Invalid environment marker: platform_python_implementation==”PyPy”
	3. How to keep both pyexcel-xls and pyexcel-xlsx
	4. pyexcel.get_io is no longer exposed

	Migrate from 0.1.x to 0.2.x
	1. “Writer” is gone, Please use save_as.
	2. “BookWriter” is gone. Please use save_book_as.

	Change log
	0.7.3 - 12.04.2025
	0.7.2 - 23.03.2025
	0.7.1 - 11.09.2024
	0.7.0 - 12.2.2022
	0.6.7 - 12.09.2021
	0.6.6 - 14.11.2020
	0.6.5 - 8.10.2020
	0.6.4 - 18.08.2020
	0.6.3 - 01.08.2020
	0.6.2 - 8.06.2020
	0.6.1 - 02.05.2020
	0.6.0 - 21.04.2020
	0.5.15 - 07.07.2019
	0.5.14 - 12.06.2019
	0.5.13 - 12.03.2019
	0.5.12 - 25.02.2019
	0.5.11 - 22.02.2019
	0.5.10 - 3.12.2018
	0.5.9.1 - 30.08.2018
	0.5.9 - 30.08.2018
	0.5.8 - 26.03.2018
	0.5.7 - 11.01.2018
	0.5.6 - 23.10.2017
	0.5.5 - 20.10.2017
	0.5.4 - 27.09.2017
	0.5.3 - 01-08-2017
	0.5.2 - 26-07-2017
	0.5.1 - 12.06.2017
	0.5.0 - 19.06.2017
	0.4.5 - 17.03.2017
	0.4.4 - 06.02.2017
	0.4.3 - 26.01.2017
	0.4.2 - 17.01.2017
	0.4.1 - 23.12.2016
	0.4.0 - 22.12.2016
	0.3.3 - 07.11.2016
	0.3.2 - 02.11.2016
	0.3.0 - 28.10.2016
	0.2.5 - 31.08.2016
	0.2.4 - 14.07.2016
	0.2.3 - 11.07.2016
	0.2.2 - 01.06.2016
	0.2.1 - 23.04.2016
	0.2.0 - 17.01.2016
	0.1.7 - 03.07.2015
	0.1.6 - 13.06.2015
	0.0.13 - 07.02.2015
	0.0.12 - 25.01.2015
	0.0.10 - 15.12.2015
	0.0.4 - 12.10.2014
	0.0.1 - 14.09.2014

	Indices and tables
	Index

