
Paper 187-26

How to Create Dynamic HTML and Javascript using your Data
Jennifer Sinodis, Bank One, Phoenix, AZ

ABSTRACT
With increasing information technology the Internet/Intranet offers
an accessible channel for displaying and viewing meaningful
information. By using SAS to generate HTML and JavaScript you
can create great looking, maintenance-free, dynamic web pages for
your users. This paper will show how to use SAS/Base to build
HTML output to your web site using SAS Version 7 and Version 8,
with HTML formatting macros and ODS (Output Delivery System).
It will also show how SAS/Base can produce JavaScript to
generate drop-down menu options built directly from your data,
validate drill down options and dynamically access web output. The
paper will also describe how SAS/IntrNetTM software can create this
output dynamically from your web site.

For the purpose of this paper most of the SAS programs shown are
simplified. Some of the programs use macro code, thus basic
macro code knowledge is assumed. This paper will also show
HTML, but it will only briefly explain some of its code for clarity.

INTRODUCTION
In the fall of 1998, my department (Direct Lending Information
Solutions) produced and mailed hundreds of printed reports to retail
managers all over the country. When we implemented our new
retail reporting web site one of our first tasks was to replace these
printed reports by publishing them to our web site.

We decided to convert our standard SAS reports to HTML files with
SAS HTML formatting macros, using SAS Version 6.12. These
static HTML files were updated nightly by a batch SAS program
and stored on the web server. We continued to enhance our web
site with SAS, building data-driven JavaScript drop-down menus.
Finally, we used the new web publishing tools available in SAS
Version 8 and SAS/IntrNetTM to convert this static web site to a
completely dynamic web site!

Currently, we produce dynamic HTML files when a request is made
from the retail web site, and store them in temporary directories on
the web server.

USING THE %OUT2HTM MACRO TO PRODUCE
HTML OUTPUT
There are several ways to produce HTML output using SAS/Base.
HTML (Hyper Text Markup Language) is the common language for
web browsers like Internet Explorer and Netscape. SAS offers four
powerful HTML formatting macros that allow you to create HTML
without having to learn the language: the output formatter
(%out2htm), the dataset formatter (%ds2htm), the tabulate
formatter (%tab2htm), and the graph formatter (%ds2graf). The
%out2htm macro converts standard SAS procedure output to
HTML, the %ds2htm macro converts any SAS dataset to HTML,
the %tab2htm converts output from the SAS Tabulate procedure to
HTML tables, and the %ds2graf converts graph output to HTML
graphs.

We updated our existing retail SAS programs with the
%out2htm formatting macro. The macro quickly converts existing
standard SAS output code to HTML by sending captured SAS
output to a file as HTML code. The %out2htm macro is applied by
placing specific code before and after the standard SAS procedure
output code.

The following program demonstrates how to use the %out2htm
macro to convert a standard report to an HTML document. This
particular report summarizes the total number of Direct Lending

applications by day for each market. The %out2htm code is
marked in bold.
%macro runrpt(market);
%out2htm(capture=on);
proc report data=RetailData headskip nowd;
where market=”&market”;
column DAY NAPP;
define DAY/group ‘Day of Application’;
define NAPP/sum ‘# of Apps’;
title “&market Market Applications”;
footnote ‘<p style=”page-break-after:

always”>Support Services</p>’;
run;
%out2htm(capture=off,
htmlfile=”c:\Day&market..htm”,

openmode=REPLACE, runmode=B, encode=N,
tcolor=BLUE, bgtype=COLOR,
bg=WHITE);

%mend runrpt;
%runrpt(OHIO);%runrpt(TEXAS);%runrpt(ARIZONA);

Essentially, this code calls the %out2htm macro and
activates the capture mode, telling SAS to capture everything
until the capture mode is turned off. The program uses macro
code in order to produce the same report for several different
markets.

This example also shows several parameters available with
the %out2htm macro. The htmlfile parameter stores the
HTML output in the specified file and directory. The
openmode parameter controls whether the generated HTML
code should replace the contents of an existing file or append
to it. The runmode parameter when defined as “B” indicates
the HTML results will be sent to the output file using
programming statements and that the macro is executed in
batch mode. The encode parameter ensures special HTML
characters are handled correctly by SAS. Several additional
parameters control the properties of the captured output, such
as ctext, tcolor, tface, hcolor, dcolor, bgtype and bg. We
use bgtype, bg and tcolor. The bgtype parameter defines
the type of background (color or image). The bg parameter
controls the background color (when bgtype=color) or the
background image (when bgtype=image). The tcolor
parameter is used to set the color of the title lines. A sample
of the HTML code generated is shown below.

<html>
<body BGCOLOR="WHITE">
<h3><fontCOLOR="BLUE">OHIO Market
Applications</h3>
…
<h3><p>style=”page-break-after: always”>
Support Services</p></h3>
</body>
</html>

This generated HTML won’t mean anything to a SAS
programmer unless he or she is familiar with HTML tags.
 Learning HTML can be useful and allows manipulation of your
HTML output; however, the idea is to use SAS to produce this
type of complex HTML code. The result of this HTML, as it
appears in the browser, is shown below.

Internet and Intranets

In order to page-break after each full page of output and have
column headings roll to each page (as requested by our users), we
built some extra HTML code. We used <p></p> (paragraph) tags in
our footnote statement to instruct the web browser to break
between paragraphs. The SAS encode parameter allowed the
browser to interpret these HTML tags and create the page-break
code (shown in bold in the HTML code above). The style option
“page-break after: always” tells the web browser to page-break
when the footnote is encountered. This style option works only in
Internet Explorer.

USING ODS TO PRODUCE HTML OUTPUT
SAS/Base Version 7 introduced the Output Delivery System (ODS).
This system has several new web publishing tools. The features of
ODS were enhanced even more in SAS/Base Version 8.

For the purpose of this paper we used ODS instead of %out2htm
because ODS creates more visually attractive reports. ODS
controls the formatting of all output objects and transforms basic
monospace output to enhanced visual output by allowing us to
manipulate the color, style and fonts of the reports, as well as use
style sheets and templates.

We updated several retail reports to enhance their visual
appearance using ODS. ODS is utilized by placing a few lines of
code before and after the standard SAS procedure output code.
ODS combines the resulting data from your proc or data step with
a template (or table definition) to several available destinations.
Some of the destinations are: HTML, Listing, Output, and RTF (rich
text file). The following program shows how to use ODS to convert
the same proc report shown above to HTML. The ODS code is in
bold.

%macro runrpt(market);
ODS LISTING OFF;
ODS HTML FILE= “c:\Day&market..htm”;
proc report data=RetailData headskip nowd;
… (same code as above)

run;
ODS HTML CLOSE;
%mend runrpt;
%runrpt(OHIO);
%runrpt(TEXAS);
%runrpt(ARIZONA);
…
When using ODS we turn off the regular output listing window, and
redirect our output to an HTML file. As you can see this code very
easily transforms standard SAS output to an HTML document, but
the resulting HTML code and document in the browser looks very
different than %out2htm generated HTML.
The result of this HTML, as it appears in the browser, is shown
below. This example is using the default template since we did not
specify a template in our SAS program.

HTML AND JAVASCRIPT
After we re-created our reports using %out2htm and ODS we
still had to create a menu page for the retail web site so the
users could access their market reports from the web. Using
Microsoft FrontPage 98, we built a permanent HTML
document with links for each market (Note: HTML files can
also be built in a regular text editor application). A sample of
the HTML code is shown below.

<html>
<head>
<title>Retail Reporting</title>
<body BACKGROUND="blueback.gif">

<p align="center"><img SRC="title.jpg"
alt=”Retail Reporting” HEIGHT="83"
WIDTH="495"></p>

<p align="center"><font SIZE="+2"
FACE="Arial">
Arizona Market Reporting</p>

<p align="center"><font SIZE="+2"
FACE="Arial">Ohio
Market Reporting</p>

<p align="center"><font SIZE="+2"
FACE="Arial">Texas
Market Reporting</p>
</body>
</html>

Essentially, this HTML code created a web page with several
links, in which each market name referenced a different
location on the retail web site. The resulting output in the
browser is shown below.

As you can see, we used an image for our title and
background.
This menu page worked well so long as only market level
reporting was needed; however, our users soon requested
banking center level reporting. We had to re-examine our retail
web site and make several changes to accommodate this new
level of reporting.

If we added links for all our banking centers to the menu page
our users would have to scroll through a long list of links in
order to make their selection. To make it easier for our users

Internet and Intranets

we chose to rebuild our menu page and use drop-down lists instead
of links. We needed two drop-down lists to make banking center
level selections quickly--one for market selection and one for
banking center selection. The banking center drop-down lists would
be limited to the banking centers available based on the market
selection made in the market drop-down list. This type of selection
limitation required additional programming not available in HTML;
therefore, we needed to add programming capabilities to the code.
Our option was to use either VBScript or JavaScript. We selected
JavaScript due to its capabilities across browsers.

JavaScript is a unique programming language that
functions only within a web browser. A full
overview of the language is beyond the scope of
this paper, but it is necessary to learn some
basic JavaScript code and syntax in order to
understand how to use SAS to build JavaScript.

INTRODUCTION TO JAVASCRIPT
JavaScript is a programming language that allows users to add
interactive content to web pages. The browser reads the code and
executes its instructions. JavaScript commands are included in the
HTML code for a web page and are enclosed in <script> tags. The
browser knows to run the JavaScript program because it’s
enclosed in these tags. It only works with HTML elements and can
enhance the interactivity of a web page by creating HTML
dynamically, validating form fields and performing basic
calculations.

JavaScript is essentially an object-based event-driven language. An
object is selected, triggering an event and a piece of JavaScript
code is executed. For example, when a user clicks a button on a
web page, the button object is selected, triggering a “click” event
which may activate certain instructions. For JavaScript purposes,
objects are defined as computer entities that can be referenced in
code. The major web objects are document, elements, form,
frame, image, link, window, history and navigator. Each object
consists of properties, methods and events.

A property is an attribute or characteristic of an object, and can be
used to modify an object. Each object has its own specific
properties. Some properties exist for several different objects, while
other properties only exist for certain objects. For example, the
document object has properties of title, bgColor and fgColor. A
form object also has a property of title, but not bgColor or
fgColor. Each object has several properties that describe it.

A method is a predefined action that an object can perform. Certain
objects can perform certain methods. For example, the
Write(“string”) method is used with the document object, and
requires a “string” parameter. This method writes the “string” to the
current window.

JavaScript connects objects, properties and methods using the dot
syntax notation. This notation consists of placing a period, or dot
between the objects, properties and methods.

Object property syntax:
Object.property = new value
Example:document.MyForm.MLevel.length = 0;

Method syntax:
Object.method()
Example: document.MyForm.MLevel.focus();

Users interact with a web page by typing or clicking on the
elements within it. These actions are called events. In JavaScript,
event handlers process events. An event handler is a script or
function that returns a True or False value. Event handlers are also
predefined in JavaScript and are recognized by the event name
preceded by the word “on,” such as onSubmit or onClick. Certain
event handlers are appropriate for certain objects. To use an event

handler with an object it must be added to the HTML tag that
defines the object.

Event Handler syntax:
<TAG onEventName = “do a function()”>
Example:
<select name="MLevel"
onChange="MktLevel()"</select>

As mentioned earlier, JavaScript programs are included in the
HTML code and are enclosed in the <script> tag. They can
also be saved in separate files (MyJavaScript.js) and simply
referenced inside the HTML program by the <script> tag. For
example, if we create a JavaScript program called RptRetail.js
we would include the following in our HTML code, generally at
the beginning of the HTML file.
<script language=”javascript”

src=”RptRetail.js”>

It is always important to put comments in your code, and this
remains true for JavaScript programs. Comments are text or
other characters ignored by the interpreter. Surprisingly,
comments in JavaScript can be defined by using “/* */”
combination, similar to the comment syntax in SAS and C++.
It is also useful to know that JavaScript is extremely case
sensitive.

ADDING JAVASCRIPT TO OUR HTML
After learning some basic JavaScript we moved forward to
rebuild our retail menu page using drop-down lists.

First, we built a new HTML file creating two drop-down lists--
one for market selection and one for banking center selection.
We analyzed the events that we wanted to take place based
on the user’s actions and decided that we needed functions to
perform the following actions:
• Set up the web page after a user enters it
• Limit the selection list of banking centers available after a

user selects a market from the market drop-down list
• Display the report of the banking center level chosen

when the user selects the “Display Report” button
We named these functions Setup(), MktLevel() and
DisplayReport().

The following HTML code shows the JavaScript references in
bold with a brief description in italics.

<html>
<head>
<title>Retail Banking Reporting</title>
<script LANGUAGE="JavaScript"

SRC="retailrpt.js"></script>

(References the JavaScript program in which
the SetUp(), MktLevel(), and DisplayReport()
functions are defined)

</head>
<body topmargin="0" leftmargin="0"
onLoad="Setup()">

(Defines the event handler to perform the
function Setup() when the body object is
completed downloading into the browser)

<p align="center"><img src="title.jpg"
alt="Retail Reporting"></p>

<form name="MyForm">
<p align="center">

Market Level:<select name="MLevel"

Internet and Intranets

onChange="MktLevel()"</select></p>

(This code defines the event handler to perform
the function MktLevel() when the select object
changes)

<p align="left"> … <font face="Arial"
color="#0000FF" size="5">
Banking Center Level:
<select name="BCLevel"</select></p>

<p><input type="button" value="Display Report"
name="DisplayBtn" onClick="DisplayReport()"</p>

(This code instructs the browser to perform the
function DisplayReport() when a user has pressed
and released the mouse button or keyboard
equivalent on the button input object)
</form>
</body>
</html>

In the HTML code above the <select> tags are used to create the
drop-down list (or selection) objects named “MLevel” and
“BCLevel”. The display button named “DisplayBtn” is created with
the <input type=”button” tag. These objects are referenced
throughout the JavaScript program. The first event handler
referenced (onLoad=”Setup()”) basically tells the browser to
execute the function Setup() when the web page is opened. The
second event handler (onChange=”MktLevel()”) instructs the
browser to execute the function MktLevel() when the user changes
or selects an entry in the drop-down list “Mlevel”. Finally, the third
event handler (onClick=”DisplayReport()”) tells the browser to run
the function DisplayReport() when the user clicks on the button
named “DisplayBtn” . The result of this HTML, as it appears in the
browser, is shown below.

BUILDING THE JAVASCRIPT PROGRAM
The JavaScript program referenced in the <script> tags defines
the three functions listed in the HTML: Setup(), MktLevel() and
DisplayReport().

The Setup() function sets up the drop-down lists on opening the
web page. It creates the options or choices to show in our market
level drop-down list, such as “Arizona”, “Texas”, or “Ohio”. It also
clears out any previous selections and automatically shows the first
selection available in the market drop-down list upon entering the
page. The example below shows some of this code. (Note: Due to
space limitation some spacing was removed from the following
programs to help readability)
function setup()
{
document.MyForm.MLevel.disabled = true;
document.MyForm.MLevel.length = 0;
document.MyForm.BCLevel.disabled = true;

document.MyForm.BCLevel.length = 0;

(This code defines both objects’ disabled
property as true to disable the selection
objects while the function is running. It also
defines their length property as 0 to clear
out these selection lists)

var OptElem1=document.createElement("OPTION");
OptElem1.text = "ARIZONA";
OptElem1.value = "AZ";
document.MyForm.MLevel.options.add(OptElem1);

(This code creates option elements and adds
them to the selection object “Mlevel”. It also
defines the text and value properties of these
options. Similar code will generate several
options in the “Mlevel” drop-down list.)

The MktLevel() function creates elements or choices to show
in the banking center level drop-down list. A sample of this
code is shown below.

function MktLevel()
{var ML = document.MyForm.MLevel.value;

(This code creates a variable ML equal to the
Mlevel selection list value. In other words,
the variable ML equals the market chosen in
the first drop-down list.)

if (ML == "AZ")
{document.MyForm.BCLevel.disabled = true;
document.MyForm.BCLevel.length = 0;

var OptElem1=document.createElement("OPTION");
OptElem1.text = "GLENDALE MAIN";
OptElem1.value = "00002.HTM";
document.MyForm.BCLevel.options.add(OptElem1;

(Basically this code creates option elements
if the “Mlevel” selection option equals “AZ”
and adds them to the selection object
“BClevel”. It also defines the text and value
properties of these options. Similar code will
generate several options in the “BCLevel”
drop-down list.)

This code shows that by defining the banking center elements,
if ML = “AZ” , we can control the options added to the
“BCLevel” selection list. Additional code would use an else if
statement. For example, after the statement else if ML=”OH”
we would define the options added to “BCLevel” for this
“Mlevel” value.

The DisplayReport() function actually instructs the browser to
load a new page when you click the button object. An example
of this code follows:

function DisplayReport()
{ var Report = document.MyForm.MLevel.value +

document.MyForm.BCLevel.value;
if (Report != "") location.href=Report;}

In the DisplayReport() function a new variable called “Report”
is created which tells the browser the name of the report the
user wants to display. For example, if the user selects the
market selection value of “AZ” and the banking center
selection value of “00002” the function will concatenate these
values and redefine the href property of the location object to
a new HTML document called “AZ00002.htm.” If the new
location exists, the function will display it; otherwise, if the

Internet and Intranets

HTML file does not exists the browser will generate an error
message.

All of the functions explained above contain other JavaScript code
that this paper will not cover in detail. Copies of the entire
JavaScript program will be available upon request.

The majority of the JavaScript program was written and tested
within the Internet Explorer web browser only.

USING SAS TO BUILD THE JAVASCRIPT
Now that we have explained the JavaScript code needed, you
probably realize how tedious it would have been to build a
permanent JavaScript program for a market hierarchy that has over
2000 banking centers!

We decided to let SAS do the work for us. In order to achieve this
we wrote three SAS programs. The first program created distinct
market and banking center datasets using proc SQL. The next
program actually built the JavaScript program described above
from these distinct datasets using put statements. The final
program produced all of the banking center level reports based on
the Direct Lending data. The first program consisted of two simple
proc SQLs and a copy of this program is available upon request.
The second program consisted of two data steps. The first data
step built the Setup() function, whereas, the second data step built
the MktLevel() and DisplayReport() functions. A sample of this SAS
program is shown below.

data _NULL_;
file “c:\RptRetail.js";
set MARKET end=lastrec;
if _N_ = 1 then do;

put 'function setup()';
put '{';
put 'document.MyForm.MLevel.disabled=true;';
put 'document.MyForm.MLevel.length=0;';
put 'document.MyForm.BCLevel.disabled=true;';
put 'document.MyForm.BCLevel.length=0;';
end;

(This code is only produced once when _n_ equals 1
because it is only needed in the JavaScript
program once)
put 'var OptElem' _n_ + (-1)'=

document.createElement("OPTION");';
put 'OptElem' _n_ + (-1) '.text = "'

MARKET + (-1) '";';
put 'OptElem' _n_ + (-1) '.value = "'

MKTABBR + (-1) '";';
put
'document.MyForm.MLevel.options.add(OptElem'

n + (-1) ');';
put ' ';

(This SAS code produced the JavaScript element
options code for every record in the distinct
market dataset; thereby, populating the market
selection list with all of the markets in the
dataset.)

The SAS code needed to build the MktLevel() function is slightly
more complicated. A sample of this code is shown below:

data _NULL_;
file “c:\RptRetail.js" mod;
set MARKET end=lastrec;
…
put '{';
put 'else if (ML == "' MKTABBR + (-1) '")';

put ' {';
put 'document.MyForm.BCLevel.disabled=true;';
put 'document.MyForm.BCLevel.length = 0;';
put ' ';

do I = 1 to nobs;
set BANKCNTR point=I nobs=nobs;
if (MKTABBR EQ MKTABBR2) then do;
put 'var OptElem' I + (-1) ' =

document.createElement("OPTION");';
put 'OptElem' I + (-1) '.text = "'

BCTRNAME + (-1) '";';
put 'OptElem' I +(-1) '.value = "'

BANKCNTR + (-1) '.HTM";';
put
'document.MyForm.BCLevel.options.add(OptElem'

I + (-1)');';
put ' ';
end;
end;

(This SAS code produced the JavaScript element
options for every record in the distinct
market/banking center dataset; thereby,
populating the banking center selection list
with only those banking centers within the
market directly from the data.)

Unfortunately, the SAS code above is difficult to read in this
format and due to space limitations we were not able to show
the entire program. A copy of the program will be available
upon request.

For the third program we simply modified the above proc
report, by implementing macros to produce a report for every
banking center within each market.

After we rolled out these three SAS programs in batch we had
reports and JavaScript that updated daily. If a new branch was
added or changed markets all three programs would
automatically update from the Direct Lending data.

USING SAS/INTRNETTM TO CREATE DYNAMIC
HTML
When we learned of the SAS/IntrNetTM application dispatcher
2.0, we were generating over a thousand banking center level
retail reports in batch every night. This product allows us to
have these reports generate dynamically from the web.
Basically, we were able to discontinue running the program to
produce the banking center level reports in batch, and only run
it when the user clicks the “Display Report” button on the web
site. We rewrote our SAS program that created the banking
center level reports in batch and changed it to only produce
the report needed based on macros passed to the program
from the web site. A sample of this program is shown below:

%out2htm(capture=on);
or ODS HTML FILE = “c:\&Mlevel.&BCLevel”;

proc report data=RetailData headskip nowd;
where market=”&MLevel” and bcenter =

“&BCLevel”;
column DAY NAPP;
define DAY/group ‘Day of Application’;
define NAPP/sum ‘# of Apps’;
title “&BCLevel Applications”;
footnote ‘<p style=”page-break-after:

always”>Support Services</p>’;
run;

%out2htm(capture=off,

Internet and Intranets

htmlfile=”c:\&Mlevel.&BCLevel”,
openmode=REPLACE, runmode=B, encode=N,
tcolor=BLUE, bgtype=COLOR,
bg=WHITE);

or ODS HTML CLOSE;

(Please remember these programs have been simplified for this
paper.)

In order to implement the SAS/IntrNetTM product we had to make
certain changes per the requirements of the application. Some of
the changes included modifying our configuration on our SAS
server, as well as defining SAS/IntrNetTM program and data
libraries.

We also had to add specific code to our HTML file in order for the
values of the selections from our drop-down lists to pass to the
indicated SAS program as macros. A sample of the enhanced
HTML code from above with the additional SAS/IntrNetTM code
required is shown below.

<p align="center"><img src="title.jpg"
alt="Retail Reporting"></p>

<form name="MyForm" (we removed the >)

action="http://cspm.bankone.net/cgi-
bin/broker.exe" method="POST"
OnSubmit="returnValidate(document.TheForm)">
<input tupe=hidden name=_service value=default>
<input type=hidden name=_program
value="dynamic.CreateRetailReports.sas">
(the above code was added)
…
By adding this code our select objects named “MLevel” and
“BCLevel” become macros that pass to the SAS program
“CreateRetailReports.sas”. SAS uses these macros in the proc
report program from above to generate the HTML of the specific
banking center level requested. All of the required changes to
implement SAS/IntrNetTM have been invisible to our users. Their
reports are updated daily and easy to find using the drop-down lists
on the web site.

CONCLUSION
Since 1998, we have greatly enhanced our retail reporting and
increased report production. Our users are very happy with the
visually attractive reports and our reporting capabilities. Using SAS
to generate JavaScript and HTML has reduced errors, decreased
maintenance and increased the “friendliness” of our web site. By
combining Base/SAS and SAS/IntrNetTM the possibilities seem
endless. Our department has been known to say, “we can do
anything” and with SAS it’s true.

REFERENCES
LaFler, Kirk Paul, “Creating HTML Output with Output Delivery
System”, Proceedings of the Twenty-Fifth Annual SAS Users
Group Inernational Conference, 2000.
Sloan, Faith R., “Introduction to Dynamic Web Publishing”,
Proceedings of the Twenty-Fifth Annual SAS Users Group
Inernational Conference, 2000.
Haworth, Lauren, “HTML for the SAS Programmer”, Proceedings of
the Twenty-Fifth Annual SAS Users Group Inernational
Conference, 2000.
Goodman, Danny, Dynamic HTML: The Definitive Reference,
O’Reilly & Associates, Inc., 1998.
SAS Institute, Inc., SAS Web Tools: Using Web Publishing Tools
with SAS Output Course Notes, SAS Institute, Inc., 1998.
SAS Institute, Inc., SAS Web Tools: Running SAS Applications on
the Web Course Notes, SAS Institute, Inc., 1998.
The Professional Development Group, Inc., Introduction to
JavaScript, The Professional Development Group, Inc., 1998.

ACKNOWLEDGMENTS
I would like to acknowledge the following people for assisting
with the editing process of this paper: Stacy Ries, Peggy
Fredricks, Patricia Davis, Janice Koger, Sam Radobenko,
Jarrod Zaremba, Jeanne Corello, Tina Dunning, Rowel
Fulinara, Richard Reigelsberger and John Clark. Thank you
for helping out. I would also like to thank Mark Moran for
teaching me something new every day! Lastly, but definitely
not least - I would like to thank EJ Harank for taking a chance
on an administrative assistant with a new degree in
Information Systems. Thanks to Bank One for their support
and resources.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:
Jennifer Sinodis
Bank One
201 N Central
Phoenix, AZ 85004
(602)221-4771
Email:Jennifer_R_Sinodis@mail.bankone.com

Internet and Intranets

	SUGI 26 Title Page

