
Design Patterns: An
Introduction

CS6.401 Software Engineering

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in

https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been gathered/adapted/generated
from various sources as well as based on my own experiences and knowledge
 -- Karthik Vaidhyanathan

Sources:

1. Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides

2. Applying UML and Patterns, Craig Larman

2

The Journey

3

What were some Lessons
Learned form Unit 1?

4

Key Design Principles

5

• Abstraction

• Encapsulation

• Modularization

• Hierarchy

So all we need to follow them – Problem Solved!!

This Photo by Unknown Author is licensed under CC BY-NC

https://here2there.ca/principles-focused-evaluation/
https://creativecommons.org/licenses/by-nc/3.0/

6

Designing that too OO Systems is not very straightforward

Things Improve with Practice

7

• Designs should be reusable, flexible and understandable

• Very difficult to get it right the first time – Not hard though!!

• Experience people also take multiple iterations

• Novice find it even more difficult to get their head around!

Experts are able to make good design….How?

Things Improve with Practice

8

• Experts tend to reuse solution that have worked in the past!

• The way objects are identified, relationships are established becomes recurring
activity

• When something has been tried and worked well, why not use it again!!

• They start seeing recurring patterns over time

• What if this experience could be recorded for reuse?

GRASP

9

General Responsibility Assignment Software Patterns or Principles

10

• Information Expert: Who gets the responsibility?
• Find which class has the data
• The one who has data also should have the operations to perform the data

• Creator: Who gets the role of the creator?
• Defines guidelines for which class should be in charge of creating objects of

other type
• E.g. Class B should be in charge of creating objects of A if:

• B contains or compositely aggregates A
• B closely uses A
• B has inputs to construct A
• B records A

General Responsibility Assignment Software Patterns or Principles

11

• Low Coupling: How to minimize impact of change?
• Assign responsibilities such that to reduce coupling
• Given two alternatives, chose the one that minimizes coupling

• High Cohesion: How to keep everything together in one object to better manage
and to minimize coupling?
• Do one thing and do it very well
• Give one end-to-end responsibility to one class
• Reduce communication

General Responsibility Assignment Software Patterns or Principles

12

• Protected Variation: How to protect part of a class from changes in part of
another class?
• Related to ensuring low coupling
• Code of a part of class B is protected from changes in code of part A
• Introduce interface around the unstable part of the codebase

• Indirection : How to ensure that one can communicate with another without
knowing each other well?
• Another principle/pattern to reduce coupling
• Introduce a new class between two classes A and B
• Changes in A or B doesn’t affect each other. The intermediary absorbs the
 impact
• Introduces a class as opposed to protected variation

General Responsibility Assignment Software Patterns or Principles

13

• Polymorphism : How to decouple clients from different ways of accomplishing a
single task?
• Contributes to low coupling
• Several ways to accomplish a task or a functionality
• Achieved through interfaces, overloading methods of super classes

• Pure Fabrication : Whom to assign the responsibility when it does not fit into
either of the classes?
• Promotes cohesion
• Sometimes a responsibility needs to be assigned but need not fit well into a class
• Create a new class (does not map to domain object for handling the responsibility

General Responsibility Assignment Software Patterns or Principles

14

• Controller: What if there is a need for someone to control the responsibility
between classes?

• Kind of a subtype of pure fabrication
• Very common in UI applications -> between UI and the backend
• Separate concerns clearly between two classes by having someone in middle
• Does not map to any domain object

Design Patterns

15

Design Patterns

16

Each Pattern describes a problem which occurs over and over again in our
environment and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the
same way twice -- Christopher Alexander

Patterns captures {Context, Problem, Solution}

What are some of the patterns you can think of?

Patterns patterns everywhere!

17

• We have a natural tendency to look for patterns in anything and everything
• Pattern of grades for courses
• Pattern of questions in question papers
• Climate patterns (rainfall, summer, …)
• …

Roman architecture Island houses in Greece

Architectural Patterns Color Patterns Algorithmic Patterns

Divide and conquer

Data Patterns

Covid cases curve

What about Software?

18

Many patterns to design and build software systems
• Architectural Patterns [Higher Level]
• Design Patterns [Lower level]

Patterns for extracting objects
And classes
(Look for nouns, verbs, etc.)

Patterns for structuring
everything

Patterns for distributing functionality

Four Elements of a Pattern

19

• Pattern Name: Handle to describe a design problem

• Problem: When to apply the pattern, preconditions, special relationships, etc.

• Solution: Elements that make up the design, relationships and collaborations
• Not a particular solution but abstract representation with potentials

• Consequences: Results and trade-off of applying a given pattern
• Perform cost-benefit analysis

Design Patterns

20

• Principles, relationships and techniques for creating reusable OO design

• Identifies participating objects, their roles, responsibilities and relationships

• Not about Linked Lists, hash tables, etc.
• The are low level structures inside classes

• Not about complex domain specific design or design of subsystems
• Domain specific design is more at high level – Architectural level

Classification of Design Patterns

21

• Mainly divided into three based on the purpose they serve

• Creational, Structural and Behavioral

• Each category has a purpose, a set of patterns that work in different scope:
• Class or object

• There are a total of 23 classic patterns: Gang of Four (GOF) patterns
• The famous book Design Patterns: Elements of Reusable Object-Oriented

Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

Classification of Design Patterns

22

• Creational
• Class - Defer creation to subclasses
• Object – Defer creation to another object

• Structural
• Class – Structure via inheritance
• Object – Structure via Composition

• Behavioral
• Class – algorithms/control via inheritance
• Object – algorithms/control via object groups

23

C – Scope is Class
O – Object Scope

Describing Patterns

24

• Pattern Name and Classification
• Name captures essence and classification the category it tackles

• Intent
• What does the design pattern do?
• What is its rationale and intent – What problem does it address?

• AKA (Also Known As): Other known names

• Motivation
• A scenario that illustrates the problem and how pattern can solve it

• Applicability
• What are the situation in which the pattern can be applied and how to

recognize them?

Describing Patterns

25

• Structure
• Graphical representation of the pattern in UML or other modeling language

• Participants
• The classes/objects participating and their responsibilities

• Collaborations
• How the participants collaborate to carry out their responsibilities.

• Consequences
• How well does the pattern support its objectives?
• What are the trade-offs and results of using the pattern?
• What part can be varied independently?

Describing Patterns

26

• Implementations and Sample Code
• Code fragments to illustrate implementation in OOP language of choice

• Known Uses
• Examples of patterns in real systems

• Related Patterns
• What are the patterns closely related to this one?
• What are the key differences?
• What other patterns with which this can be used?

Some Principles

27

Program to Interface Not Implementation

28

• One of the most important OO Design Principles

• “Program to interface” refers to the idea of ensuring loose coupling
• Does not only mean the “Interface”?

• Very useful when lot of changes are expected

• Create an interface, define methods -> create classes that implements them

• Allows external objects to easily communicate

• Maintainability and flexibility increases

Favor Object Composition over Class Inheritance

29

• Two most common techniques: Inheritance and Composition

• Class inheritance: White-box reuse
• Internals of parent class are visible to child class
• Defined statically at compile time
• Sub class can override methods of parent class

• Inheritance is not always the go to solution - ”breaks encapsulation”

• Composition: Black-box reuse
• Objects acquiring references to other objects
• Defined dynamically at run time
• Encapsulation is not broken – Objects are accessed through interfaces
• Get what is needed by assembling and not by creating

SOLID Design Principle

30

• S: Single Responsibility Principle
• Handle one responsibility and do it well

• O: Open for extension, closed for modification
• No need to modify classes for changes (polymorphism)

• L: Liskov Substitution Principle
• Subtypes should be replaceable without breaking behaviors

• I: Interface Segregation Principle
• Don’t depend on unused methods

• D: Dependency Inversion Principle
• Depend on abstractions and not implementations

Thank You

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

Course website: karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

	Slide 1: Design Patterns: An Introduction
	Slide 2: Acknowledgements
	Slide 3: The Journey
	Slide 4: What were some Lessons Learned form Unit 1?
	Slide 5: Key Design Principles
	Slide 6: Designing that too OO Systems is not very straightforward
	Slide 7: Things Improve with Practice
	Slide 8: Things Improve with Practice
	Slide 9: GRASP
	Slide 10: General Responsibility Assignment Software Patterns or Principles
	Slide 11: General Responsibility Assignment Software Patterns or Principles
	Slide 12: General Responsibility Assignment Software Patterns or Principles
	Slide 13: General Responsibility Assignment Software Patterns or Principles
	Slide 14: General Responsibility Assignment Software Patterns or Principles
	Slide 15: Design Patterns
	Slide 16: Design Patterns
	Slide 17: Patterns patterns everywhere!
	Slide 18: What about Software?
	Slide 19: Four Elements of a Pattern
	Slide 20: Design Patterns
	Slide 21: Classification of Design Patterns
	Slide 22: Classification of Design Patterns
	Slide 23
	Slide 24: Describing Patterns
	Slide 25: Describing Patterns
	Slide 26: Describing Patterns
	Slide 27: Some Principles
	Slide 28: Program to Interface Not Implementation
	Slide 29: Favor Object Composition over Class Inheritance
	Slide 30: SOLID Design Principle
	Slide 31: Thank You

