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The Journey
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What were some Lessons 
Learned form Unit 1?
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Key Design Principles

5

• Abstraction

• Encapsulation

• Modularization

• Hierarchy 

So all we need to follow them – Problem Solved!!

This Photo by Unknown Author is licensed under CC BY-NC

https://here2there.ca/principles-focused-evaluation/
https://creativecommons.org/licenses/by-nc/3.0/
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Designing that too OO Systems is not very straightforward



Things Improve with Practice

7

• Designs should be reusable, flexible and understandable 

• Very difficult to get it right the first time – Not hard though!!

• Experience people also take multiple iterations

• Novice find it even more difficult to get their head around!

Experts are able to make good design….How?



Things Improve with Practice
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• Experts tend to reuse solution  that have worked in the past!

• The way objects are identified, relationships are established becomes recurring 
activity

• When something has been tried and worked well, why not use it again!!

• They start seeing recurring patterns over time

• What if this experience could be recorded for reuse?



GRASP
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General Responsibility Assignment Software Patterns or Principles
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• Information Expert: Who gets the responsibility?
• Find which class has the data 
• The one who has data also should have the operations to perform the data

• Creator: Who gets the role of the creator?
• Defines guidelines for which class should be in charge of creating objects of 

other type
• E.g. Class B should be in charge of creating objects of A if:

• B contains or compositely aggregates A
• B closely uses A
• B has inputs to construct A
• B records A



General Responsibility Assignment Software Patterns or Principles
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• Low Coupling: How to minimize impact of change?
• Assign responsibilities such that to reduce coupling
• Given two alternatives, chose the one that minimizes coupling

• High Cohesion: How to keep everything together in one object to better manage 
and to minimize coupling?
• Do one thing and do it very well
• Give one end-to-end responsibility to one class
• Reduce communication 



General Responsibility Assignment Software Patterns or Principles
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• Protected Variation: How to protect part of a class from changes in part of 
another class?
• Related to ensuring low coupling
• Code of a part of class B is protected from changes in code of part A
• Introduce interface around the unstable part of the codebase

• Indirection : How to ensure that one can communicate with another without 
knowing each other well?
• Another principle/pattern to reduce coupling
• Introduce a new class between two classes A and B
• Changes in A or B doesn’t affect each other. The intermediary absorbs the
     impact
• Introduces a class as opposed to protected variation



General Responsibility Assignment Software Patterns or Principles
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• Polymorphism : How to decouple clients from different ways of accomplishing a 
single task?
• Contributes to low coupling
• Several ways to accomplish a task or a functionality
• Achieved through interfaces, overloading methods of super classes

• Pure Fabrication  : Whom to assign the responsibility when it does not fit into 
either of the classes?
• Promotes cohesion
• Sometimes a responsibility needs to be assigned but need not fit well into a class
• Create a new class (does not map to domain object for handling the responsibility



General Responsibility Assignment Software Patterns or Principles
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• Controller:  What if there is a need for someone to control the responsibility 
between classes?

• Kind of a subtype of  pure fabrication
• Very common in UI applications -> between UI and the backend
• Separate concerns clearly between two classes by having someone in middle
• Does not map to any domain object



Design Patterns
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Design Patterns
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Each Pattern describes a problem which occurs over and over again in our 
environment and then describes the core of the solution to that problem, in such a 
way that you can use this solution a million times over, without ever doing it the 
same way twice                        -- Christopher Alexander

Patterns captures {Context, Problem, Solution}

What are some of the patterns you can think of?



Patterns patterns everywhere!
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• We have a natural tendency to look for patterns in anything and everything
• Pattern of grades for courses
• Pattern of questions in question papers
• Climate patterns (rainfall, summer, …)
• …

Roman architecture Island houses in Greece

Architectural Patterns Color Patterns Algorithmic Patterns

Divide and conquer

Data Patterns

Covid cases curve



What about Software?
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Many patterns to design and build software systems
• Architectural Patterns [Higher Level]
• Design Patterns [Lower level]

Patterns for extracting objects 
And classes
(Look for nouns, verbs, etc.) 

Patterns for structuring 
everything

Patterns for distributing functionality



Four Elements of a Pattern
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• Pattern Name: Handle to describe a design problem

• Problem: When to apply the pattern, preconditions, special relationships, etc.

• Solution: Elements that make up the design, relationships and collaborations
• Not a particular solution but abstract representation with potentials 

• Consequences: Results and trade-off of applying a given pattern
• Perform cost-benefit analysis



Design Patterns 
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• Principles, relationships and techniques for creating reusable OO design

• Identifies participating objects, their roles, responsibilities and relationships

• Not about Linked Lists, hash tables, etc.
• The are low level structures inside classes

• Not about complex domain specific design or design of subsystems
• Domain specific design is more at high level – Architectural level



Classification of Design Patterns
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• Mainly divided into three based on the purpose they serve

• Creational, Structural and Behavioral

• Each category has a purpose, a set of patterns that work in different scope:
• Class or object 

• There are a total of 23 classic patterns: Gang of Four (GOF) patterns
• The famous book Design Patterns: Elements of Reusable Object-Oriented 

Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides



Classification of Design Patterns
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• Creational
• Class -  Defer creation to subclasses
• Object – Defer creation to another object

• Structural
• Class – Structure via inheritance
• Object – Structure via Composition

• Behavioral
• Class – algorithms/control via inheritance
• Object – algorithms/control via object groups
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C – Scope is Class
O – Object Scope



Describing Patterns
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• Pattern Name and Classification
• Name captures essence and classification the category it tackles 
 

• Intent
• What does the design pattern do?
• What is its rationale and intent – What problem does it address?

• AKA (Also Known As): Other known names

• Motivation
• A scenario that illustrates the problem and how pattern can solve it

• Applicability
• What are the situation in which the pattern can be applied and how to 

recognize them?



Describing Patterns
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• Structure
• Graphical representation of the pattern in UML or other modeling language

• Participants
• The classes/objects participating and their responsibilities

• Collaborations 
• How the participants collaborate to carry out their responsibilities.

• Consequences
• How well does the pattern support its objectives?
• What are the trade-offs and results of using the pattern?
• What part can be varied independently?



Describing Patterns
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• Implementations and Sample Code
• Code fragments to illustrate implementation in OOP language of choice

• Known Uses 
• Examples of patterns in real systems

• Related Patterns 
• What are the patterns closely related to this one?
• What are the key differences?
• What other patterns with which this can be used?



Some Principles
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Program to Interface Not Implementation
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• One of the most important OO Design Principles

• “Program to interface”  refers to the idea of ensuring loose coupling
• Does not only mean the “Interface”?

• Very useful when lot of changes are expected 

• Create an interface, define methods -> create classes that implements them

• Allows external objects to easily communicate

• Maintainability and flexibility increases



Favor Object Composition over Class Inheritance
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• Two most common techniques: Inheritance and Composition

• Class inheritance: White-box reuse
• Internals of parent class are visible to child class
• Defined statically at compile time
• Sub class can override methods of parent class

• Inheritance is not always the go to solution - ”breaks encapsulation”

• Composition: Black-box reuse
• Objects acquiring references to other objects
• Defined dynamically at run time
• Encapsulation is not broken – Objects are accessed through interfaces
• Get what is needed by assembling and not by creating  



SOLID Design Principle
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• S: Single Responsibility Principle
• Handle one responsibility and do it well

• O: Open for extension, closed for modification
• No need to modify classes for changes (polymorphism)

• L: Liskov Substitution Principle
• Subtypes should be replaceable without breaking behaviors

• I: Interface Segregation Principle
• Don’t depend on unused methods

• D: Dependency Inversion Principle 
• Depend on abstractions and not implementations



Thank You
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