
Section 2.2
Set Operations

Propositional calculus and set theory are both instances of
an algebraic system called a

Boolean Algebra.

The operators in set theory are defined in terms of the
corresponding operator in propositional calculus

As always there must be a universe U. All sets are
assumed to be subsets of U

Definition:  Two sets A and B are equal, denoted A  = B,
iff

∀x[x ∈A ↔ x ∈B].

_______________

Note: By a previous logical equivalence we have

A = B iff ∀x[(x ∈A → x ∈B) ∧ (x ∈B → x ∈A)]

or

A = B iff A ⊆ B and B ⊆ A

____________________
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Definitions:
.

• The union of A and B, denoted A∪ B, is the set

{x | x∈A∨x∈B}

• The intersection of A and B, denoted A ∩  B, is the
set

{x | x∈A∧x∈B}

Note: If the intersection is void, A and B are said to be
disjoint.

• The complement  of A, denoted A, is the set

{x | ¬ (x∈A)}

Note: Alternative notation is Ac, and {x|x∉A}.

• The difference of A and B, or the complement of B
relative to A,  denoted A - B, is the set

A ∩ B

Note: The (absolute) complement of A is U - A.

• The symmetric difference of A and B, denoted
A ⊕ B, is the set

(A − B)∪ (B − A)

______________________
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Examples: U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

A= {1, 2, 3, 4, 5}, B = {4, 5, 6, 7, 8}. Then

•  A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}

• A ∩ B = {4, 5}

• A  = {0, 6, 7, 8, 9, 10}

• B  = {0, 1, 2, 3, 9, 10}

• A  - B = {1, 2, 3}

• B - A = {6, 7, 8}

• A ⊕ B = {1, 2, 3, 6, 7, 8}
_______________________

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 2.2

Prepared by: David F. McAllister TP 3 ©1999, 2007 McGraw-Hill



Venn Diagrams

A useful geometric visualization tool (for 3 or less sets)

• The Universe U is the rectangular box

• Each set is represented by a circle and its interior

• All possible combinations of the sets must be
represented

A B

U U
A B

C

For 2 sets For 3 sets

Shade the appropriate region to represent the given set
operation.

Set Identities

Set identities correspond to the logical equivalences.

________________
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Example:

The complement of the union is the intersection of the
complements:

A ∪ B = A∩ B

Proof: To show:

∀x[x ∈A ∪ B ↔ x ∈A ∩ B]

To show two sets are equal we show for all x that  x is a
member of one set if and only if it is a member of the
other.

We now apply an important rule of inference  (defined
later) called

Universal Instantiation

In a proof we can eliminate the universal quantifier which
binds a variable if we do not assume anything about the
variable other than it is an arbitrary member of the
Universe. We can then treat the resulting predicate as a
proposition.

We say

'Let x be arbitrary.'

    Then    we can treat the predicates as propositions:
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Assertion Reason

x ∈A ∪ B ⇔ x ∉[A ∪ B] Def. of complement

x ∉A ∪ B ⇔ ¬[x ∈A∪ B]   Def. of  ∉

⇔ ¬[x ∈ A∨ x ∈B] Def. of union

⇔ ¬x ∈A ∧ ¬x ∈B DeMorgan's Laws

⇔ x ∉A ∧ x ∉B Def. of ∉

⇔ x ∈A ∧ x ∈B Def. of complement

⇔ x ∈A ∩ B Def. of intersection

Hence

x ∈A ∪ B ↔ x ∈A ∩ B

is a tautology.

Since

• x was arbitrary

• we have used only logically equivalent assertions
and definitions

we can apply another rule of inference called
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Universal Generalization

We can apply a universal quantifier to bind a variable if
we have shown the predicate to be true for all values of the
variable in the Universe.

and claim the assertion is true for all x, i.e.,

∀x[x ∈A ∪ B ↔ x ∈A ∩ B]

Q. E. D. (an abbreviation for the Latin phrase “Quod Erat
Demonstrandum” - “which was to be demonstrated” used
to signal the end of a proof)

_______________

Note: As an alternative which might be easier in some
cases, use the identity

A = B ⇔ [A ⊆ B and B ⊆ A]

___________________

Example:

Show A ∩ (B − A) = ∅

The void set is a subset of every set. Hence,

A ∩ (B − A) ⊇ ∅

Therefore, it suffices to show
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A ∩ (B − A) ⊆ ∅

or

∀x[x ∈A ∩ (B − A) → x ∈∅]

So as before we say 'let x be arbitrary’.

Show

x ∈A ∩ (B- A) → x ∈∅

is a tautology.

But the consequent is always false.

Therefore, the antecedent better always be false also.

Apply the definitions:

Assertion Reason

x ∈A ∩ (B- A)⇔ x ∈A ∧ x ∈(B- A)  Def. of  ∩
⇔ x ∈A ∧ (x ∈B∧ x ∉A) Def. of   -
⇔ (x ∈A ∧ x ∉A) ∧ x ∈B Props of 'and'
⇔ 0 ∧ x ∈B Table 6
⇔ 0 Domination

Hence, because P ∧ ¬P is always false, the implication is
a tautology.

The result follows by Universal Generalization.

Q. E. D.
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Union and Intersection
of Indexed Collections

Let A1, A2 ,..., An be an indexed collection of sets.

Union and intersection are associative (because 'and' and
'or' are) we have:

  
U
i=1

n

Ai = A1 ∪ A2 ∪...∪An

and

  i=1

n

I Ai = A1 ∩ A2 ∩ ...∩ An

___________________

Examples:

Let

Ai = [i,∞),1 ≤ i < ∞

  
U
i=1

n

Ai  = [1,∞)

  
I
i=1

n

Ai  = [n,∞)

____________________
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