Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 2.2

Section 2.2
Set Operations

Propositional calculus and set theory are both instances of
an algebraic system called a

Boolean Algebra.

The operators in set theory are defined in terms of the
corresponding operator in propositional calculus

As always there must be auniverse U. All setsare
assumed to be subsets of U

Definition: Two sets A and B are equal, denoted A = B,
i

"x[x1T A« x1 BJ.

Note: By a previous logical equivalence we have
A=Biff " x[(x] A® x1 BU(xT B® xI A)]
or

A=Biff Al BandBi A
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Definitions:
 The union of A and B, denoted AE B, isthe set
{x | xi AUx] B}

» The intersection of A and B, denoted A ¢ B, isthe
set
{x | xT Auxi B}

Note: If the intersection isvoid, A and B are said to be
digoint.
» The complement of A, denoted A is the set
{x]a(xI A)}
Note: Alternative notation is Ac, and { x|xi A}.

» The difference of A and B, or the complement of B
relativeto A, denoted A - B, isthe set

ACB
Note: The (absolute) complement of A isU - A.

» The symmetric difference of A and B, denoted
AA B, isthe set

(A- B)E(B- A
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Examples. U ={0, 1, 2, 3,4, 5,6, 7, 8, 9, 10}
A={1,2,3,4,5,B={4,5,6,7, 8. Then
« AEB={1,2,3,4,5,6,7, 8}
« ACB={4, 5}
«A={0,6,78,09, 10}
«B={01,2 309, 10}
*A-B={1,2 3}
B-A={6,7, 8}
«AAB={1,223,6,7, 8}
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Venn Diagrams
A useful geometric visualization tool (for 3 or less sets)
» The Universe U is the rectangular box
» Each set isrepresented by acircle and its interior

 All possible combinations of the sets must be
represented

@] [&

For 2 sets For 3 sets

Shade the appropriate region to represent the given set
operation.

Set |dentities

Set identities correspond to the logical equivalences.
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Example:

The complement of the union is the intersection of the
complements:

———

AEB=ACB
Proof: To show:
"x[x1 AEB« x1 ACB]

To show two sets are equal we show for all x that x isa
member of one set if and only if it isamember of the
other.

We now apply an important rule of inference (defined
later) called

Universal Instantiation

In a proof we can eliminate the universal quantifier which
binds a variable if we do not assume anything about the
variable other than it is an arbitrary member of the
Universe. We can then treat the resulting predicate as a
proposition.

We say
'Let x be arbitrary.'

Then we can treat the predicates as propositions:
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Assertion Reason

A ——

x] AEBU xI [AE B] Def. of complement
x| AEBU @[x] AE B] Def.of |

U gxI AUxT B] Def. of union

U @x1 AUGxT B DeMorgan's Laws

U xI AUxI B Def. of |

U xT AUxI B Def. of complement

U x1 ACB Def. of intersection
Hence

IS atautology.
Since
» X Was arbitrary

» we have used only logically equivalent assertions
and definitions

we can apply another rule of inference called
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Universal Generalization

We can apply auniversal quantifier to bind avariable if
we have shown the predicate to be true for all values of the
variable in the Universe.

and claim the assertion istrue for al x, i.e,,
"x[x1 AEB« x1 ACB]
Q. E. D. (an abbreviation for the Latin phrase “ Quod Erat

Demonstrandum” - “which was to be demonstrated” used
to signal the end of a proof)

Note: As an alternative which might be easier in some
cases, use the identity

A=BU [Al BandBi A]

Example:
Show AC(B- A=A
The void set is a subset of every set. Hence,

AC(B- A E A&

Therefore, it suffices to show
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AC(B- Al £
or
"X[x] AC(B- A® x| A
S0 as before we say 'let x be arbitrary’.
Show
x1 AC(B-A)® xI /E
IS atautology.
But the consequent is always false.
Therefore, the antecedent better always be false also.

Apply the definitions:

Assertion Reason
x1 (;(B A)U x1 AUxI (B-A) Def.of G
U xT AUXI BUxI A) Def. of -
U (xI Auxi A)UxI B Props of ‘and'
U OUxI B Table 6
Uo Domination

Hence, because P U@P is always false, the implication is
atautology.

The result follows by Universal Generalization.

Q. E.D.
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Union and | nter section
of Indexed Collections

Let A,A,,..., A, beanindexed collection of sets.

Union and intersection are associative (because ‘and' and
‘or' are) we have:

UA=AEAE..EA

and

iriA=Achzc;...<;Ah

Examples:
Let
A =[i,¥)1£i<¥

iQA:ux)
NA=[n¥)
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