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Tests for Stability: 

 • Jury’s test 

This is an algebraic test, similar in form to the Routh - Hurwitz approach, 

that determines whether the roots of a polynomial lie within the unit circle. 

As for Routh - Hurwitz, the test consists of two parts: 

 (1) simple test for necessary conditions 

 (2) test for sufficient conditions 

For a polynomial of the form: 

 F z  anz
n an1z

n1 L a1z a0  0  an  0  

the necessary conditions for stability are: 

 F 1  0  

and 1 
n
F 1  0  



EE5563: Microprocessors and Embedded Systems 

Lecture 7b – Continuation of Lecture 7a 

 

The sufficient conditions for stability are obtained by forming a table as 

follows: 

 

row z 0 z1 z 2 K znk K zn1 zn

1 a0 a1 a2 K ank K an1 an

2 an an1 an2 K ak K a1 a0

3 b0 b1 b2 K bnk K bn1

4 bn1 bn2 bn3 K bk K b0

5 c0 c1 c2 K K cn2

6 cn2 cn3 cn4 K K c0

M M M M M

2n  5 p0 p1 p2 p3

2n  4 p3 p2 p1 p0

2n  3 q0 q1 q2

 

where: 

 bk 
a0 ank

an ak

 ck 
b0 bn1k

bn1 bk

 dk 
c0 cn2k

cn2 ck
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The sufficient conditions for stability are given by: 

 

a0  an

b0  bn1

c0  cn2

M M

p0  p3

q0  q2
















n 1  conditions  

These inequality conditions must provide conclusive results - singularities 

occur if the first and last elements of any row are zero. 

Singularities can be dealt with by considering an infinitesimal contraction 

and expansion of the unit circle using the transformation 

 z  1  z  

where  is a very small number. 

The difference between the no. of roots found inside (or outside) the unit 

circle when the circle is expanded and contracted by  is the no. of roots 

on the unit circle. 

The transformation is applied by using: 

 1  
n

zn  1n zn  
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 the coefficient of the zn  term is multiplied by 1n . 

Example: CE: z 2  z  2  0 

Necessary conditions: 

 F 1  12 1 2  2  0  √ 

 1 
n
F 1  1 

2
1 

2
 1  2




 4  0  √ 

Sufficient conditions: 

 row 

 1: a0  2 a1  1 a2  1 

 2: a2 1 a1  1 a0  2 

 a0  2  2  and a2  1 

 a0  a2 system is UNSTABLE 
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Tests for Stability: 

• bilinear transform & Routh - Hurwitz test 

bilinear transform 

 z 
1w

1w
 gives w 

z 1

z 1
, undefined at z  1









 

or z 
w 1

w 1
 gives w 

z 1

z 1
, undefined at z  1









 

Maps the inside of the unit circle in the z - plane into the LH w - plane. 

 

Now can use Routh-Hurwitz criterion on the CE in the w - plane. 

z w


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Review of Routh - Hurwitz 

Consists of (1) test for necessary conditions 

 (2) test for sufficient conditions 

For a polynomial of the form 

 F s  ans
n an1s

n1 L a0  0  

the necessary condition for stability is that all the coefficients are present 

and have the same sign. 

Sufficient conditions are obtained from the following table: 

 

sn an an2 an4 an6 K

sn1 an1 an3 an5 K

sn2 bn1 bn2 bn3 K

sn3 cn1 cn2 cn3 K

sn4 dn1 dn2

M M

s0

 

 



EE5563: Microprocessors and Embedded Systems 

Lecture 7b – Continuation of Lecture 7a 

 

where 

 bn k  
1

an1

an an2k

an 1 an 2k1 

 cnk  
1

bn1

an1 a
n 2k1 

bn1 b
n k1 

 

 dnk  
1

cn1

bn1 b
n k1 

cn1 c
n k1 

 

Every change of sign in the first column of this array signifies the 

presence of a root with a positive real part. 

Two different types of singularity can occur: 

(a) zero in first column - solution is to let   1 s  and repeat the procedure. 

(b) full row of zeros (indicates diametrically opposite roots) -  

 solution is to solve the auxiliary equation (i.e. the polynomial  whose 

coefficients are the elements of the row immediately above the row of 

zeros) to give the offending roots. The Routh array is completed by 

replacing the row by the coefficients of the first derivative of the 

auxiliary equation. 
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Example: CLCE: z 2  z  2  0 

use z 
1w

1w
 

 CE becomes 
1w 

2

1w 
2


1w 
1w 

 2  0  

 2w2 w 1 0  

Necessary conditions: 

 all coefficients present √ 

 and have the same sign x 

Sufficient conditions: 

 w2 : 2 1 

 w1 : -1 0 

 w0 : 
1

1

2 1

1 0
 1 
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2 sign changes in the first column - 2 unstable poles 
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Time Domain Analysis 

As with the continuous-time case, we can characterize the time response 

of digital systems by overshoot, rise time etc. 

 

max. overshoot  from standard 2nd order curve 

0 t

y t 

tr

tp

ts

% overshoot (PO )

100
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discrete-time case: care must be taken that sampling period is sufficiently 

small. 
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Example: - OLTF G s  
1

s 1 2s 
 

Find CLTF and hence determine the closed loop unit step response. 

For sampling times of 0.25 s and 1.0 s, find the OL z - transfer function, 

the CL z - transfer function and hence the CL unit step response. 

Using MATLAB: 
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% MATLAB commands (code) to produce step responses, root loci, 
% frequency responses for a continuous and discrete time system. 
% (comments begin with a %) 
clf reset;                        %clear all figures and reset properties 
K=1;T=2;                          %system parameters 
num=K;                            %open loop numerator 
den=[T 1 0];                      %open loop denominator polynomial 
cont_sys=zpk([],[0 -1/T],K/T);    %define continuous time system in  

zero/pole/gain form 
 
%calculate and display the closed loop system 
cl_cont_sys=feedback(cont_sys,1)  
pause 
 
tfinal=20;                        %set final time 
t=[0:0.1:tfinal];                 %produce time vector 
figure(1) 

step(cl_cont_sys,t)               %plot now 
hold on 
pause 
[y,x]=step(cl_cont_sys,t);        %store results for later 
 
Ts1=0.25;                         %define sampling period 
dis_sys1=c2d(cont_sys,Ts1,'zoh')  %discretize system 
cl_dis_sys1=feedback(dis_sys1,1)  %close the feedback loop 
step(cl_dis_sys1,tfinal) 
pause 

k1=[0:tf/Ts1];                       %"time" vector 
[yz1,xz1]=step(cl_dis_sys1,tfinal);  %store results for later 
 
Ts2=1.0;                             %increase sampling period 
dis_sys2=c2d(cont_sys,Ts2,'zoh');    %repeat 
cl_dis_sys2=feedback(dis_sys2,1)     %close the feedback loop 
step(cl_dis_sys2,tfinal) 
pause 
hold off 

k2=[0:tf/Ts2];                       %"time" vector 
[yz2,xz2]=step(cl_dis_sys2,tfinal);  %store results for later 
 
%Produce all plots together for comparison. 
plot(t,y,k1*Ts1,yz1,'+',k2*Ts2,yz2,'o') 
pause 
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%Now do root loci 
figure(2) 
rlocus(cont_sys) 
pause 
rlocus(dis_sys1) 
axis('equal') 
pause 
rlocus(dis_sys2) 

axis('equal') 
pause 
 
%Finally look at frequency response 
figure(3) 
bode(cont_sys) 
hold on 
pause 
bode(dis_sys1) 

pause 
bode(dis_sys2) 
pause 
hold off 
 
%Nyquist plots don't work very well due to type 1 system 
% - need to restrict frequency range and specify axes. 
figure(4) 
wmin=0.1;                      %set minimum frequency 
wmax=10;                       %set maximum frequency 

nyquist(cont_sys,{wmin,wmax}) 
axis([-2 1 -2 1])              %set axis limits 
grid 
hold on 
pause 
nyquist(dis_sys1,{wmin,wmax}) 
axis([-2 1 -2 1]) 
grid 
pause 

nyquist(dis_sys2,{wmin,wmax}) 
axis([-2 1 -2 1]) 
grid 
pause 
hold off 
axis('normal') 
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close all 
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Root Locus Analysis 

Block diagram algebra of closed - loop sampled - data systems leads to 

characteristic equations of the form, 

 1G z H z , 1GH z , etc 

or in general 1P z   where P z is a formulation of the open - loop 

transfer function, the exact nature of which is determined by the position 

of samplers in the loop. 

P z  is a rational function in z and therefore the characteristic polynomial 

can be written in standard pole - zero form as: 

 1
K z z i 

z  p
i 

  (1) 

where z i  are the open loop system zeros, p i  the open loop system poles 

and K is a variable gain term.  

Eq. (1) is in exactly the same form as can be obtained for root - locus 

analysis of characteristic polynomials in the s - domain and therefore the 

analysis is identical. 
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The only difference lies in the definition of the stability boundary. 
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Review of Root Locus 

Although computer packages for plotting the root - locus are now readily 

available, it is important to know the basic rules for sketching the loci. 

Re-writing (1) as 

 
K z z1  z z2  z  zm 

z  p
1  z  p

2  z  z
n 

 1   (2) 

then any point on the root locus must satisfy the magnitude condition: 

 
K z z1 z z2 z zm

z  p
1
z  p

2
z  p

n

 1   (3) 

and the angle condition: 

 

 z  z
1   z  z

2   z  z
m  

  z  p1   z  p2   z  pn   i

i  3,1,1,3,5,

  (4) 

The angle condition is used to locate points on the root locus and the 

magnitude condition gives the value of K at that point. 
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Manual sketching of the root - locus diagram is considerably eased by a 

series of rules that when methodically applied give a good indication of 

the shape of the loci. 

1) The loci start (i.e. K  0) at the n poles of the open loop TF P z  

2) The no. of loci is equal to the order of the characteristic equation. (The 

plot is symmetrical about the real axis.) 

3) The root loci end (i.e. K ) at the m zeros of P z , and if m < n 

(usual) then the remaining n - m loci tend to infinity. 

4) Portions of the real axis are sections of a root locus if the no. of poles 

and zeros lying on the axis to the right is odd. 

5) Those loci terminating at infinity tend towards asymptotes at angles 

relative to the positive real axis given by: 

 


n m 
, 

3

n m 
, 

5

n m 
, … , 

2 n m 1 
n m 

 (5) 



EE5563: Microprocessors and Embedded Systems 

Lecture 7b – Continuation of Lecture 7a 

 

Examples: 

 

  3 excess poles 4 excess poles 

6) The intersection of the asymptotes on the real axis occurs at the 

'centre of gravity' of the pole - zero configuration of P z , i.e. at 

 z 
poles of P z  zeros of P z 

n m 
   (6) 

7) The intersection of the root - loci with the unit circle can be calculated 

by Jury, Bilinear Transformation/Routh - Hurwitz or geometrical analysis 

(only on some plots). 

120° 90°
45°
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8) The breakaway points (points at which multiple roots of the 

characteristic polynomial occur) of the root locus are the solutions of 
dK

dz
 0 (not all the solutions are necessarily breakaway points.) 
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Examples 

 

 

 

P (z ) 
1

z  p
1

jz

z
p

1

P (z ) 
z  z

1

z  p
1

jz

z
p

1
z

1

p
2

P (z ) 
1

z  p
1  z  p

2 
jz

z
p

1
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P (z ) 
z  z

1 
z  p

1  z  p
2 

p
2

jz

z
p

1
z

1

z
1

P (z ) 
z  z

1 
z  p

1  z  p
2 

p
2

jz

z
p

1

z
1

P (z ) 
z  z

1 
z  p

1  z  p
2 

p
2

jz

z

p
1
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P (z ) 
1

z  p
1  z  p

2  z  p
3 

p
3

jz

z
p

1
p

2

P (z ) 
z  z

1 
z  p

1  z  p
2  z  p

3 

p
3

jz

z
p

1
p

2
z

1
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Lines of constant damping ratio, : 

in the s-plane, constant  is represented by: 

 

using the mapping z  esT  

 z  e
nT  jnT 12

 e
nTe

jnT 1 2

 

so z  e
nT  and z  nT 1  2  

For fixed , as n  increases: 

 z  decreases exponentially; z  increases linearly 

i.e. logarithmic spiral 



j
 = constant

s  
n
 jn 1 

2
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Settling time considerations: 

For settling to within 5%, ts 
3


n

 - depends on n  

So real part of s   3
t s

 

In the z-plane, z  e
nT  

  z e
3T

ts  

 


z

j z

1



j

1

radius e


1
T
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Digital Control System Design 

General requirements: 

 • stability of the closed-loop system 

 • good transient behaviour 

 • good steady state behaviour 

 • good disturbance rejection 

+  

 the control algorithm must be realizable 

 i.e. not require future values of control signals 

Design Methods 

 • continuous-time design followed by digital re-design 

 • digital frequency domain design 

 • digital root locus design 

 • state feedback design 

 • digital PID design 
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 • deadbeat response design 
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Digital Re-Design of Continuous-Time Controllers 

- one of the simplest methods 

Procedure: 

design continuous compensator using traditional methods  

(Bode, phase lead etc) 

then “discretize” the resulting compensator. 

Traditionally popular in industry 

- continuous methods are well understood 

- many processes have existing continuous-time compensators 
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1 a) Numerical Integration: Forward Rectangular Rule 

consider a continuous variable u t : 

 

if y t  u t dt   area under curve , then D s 
Y s 

U s 


1

s
 

 u t dt   area of rectangles 

 i.e. y kT  y k 1 T Tu k 1 T  

  e.g. y 4T  y 3T new area  

 so D z  
Y z 

U z 


Tz 1

1 z 1 
T

z 1
 

 D z  is obtained from D s  by making the substitution: 

t

u t 

T 2T 3T 4T 5T

T
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  s 
z 1

T
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1 b) Numerical Integration: Backward Rectangular Rule  

 

 so y kT   y k 1 T Tu kT  

 D z 
Y z 

U z 


T

1 z1 
Tz

z 1
 

 so D z  is obtained from D s  by making the substitution: 

  s 
z 1

Tz
 

alternatively, can also consider 

 sY s  
dy

dt

y

t


y kT  y k 1 T 

T


1 z 1

T
Y z  

 finite difference 

t

u t 

T 2T 3T 4T 5T

T
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1 c) Numerical Integration: Tustin’s Rule 

 

y t  u t dt   area of trapeziums  

 so y kT  y k 1 T 
T

2
u kT u k 1 T   

  i.e. y 4T  y 3T A  

  D z  
Y z 

U z 


T

2

1 z 1

1 z 1 
T

2

z 1

z 1
 

remembering D s 
1

s
, D z  is obtained from D s  by making the 

substitution: 

 s 
2

T

z 1

z 1
 Tustin’s rule 

t

u t 

T 2T 3T 4T 5T

A
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  (bilinear transformation) 
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Stability Considerations of Numerical Integration Rules 

The following relations can be derived: 

 a) forward rectangular rule: z  1Ts  

 b) backward rectangular rule: z 
1

1Ts
 

 c) Tustin’s rule: z 
1Ts 2 
1Ts 2 

 

Letting s  j  gives the stability boundary for each approximation: 

a stable D s  could give 

a) b) c)
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unstable D z  
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Pre-warping with Tustin’s Rule 

The stability boundary using Tustin’s rule is the same as z  e
sT

 

BUT the complete j  axis is mapped into the 2π circumference of the 

unit circle which is not the case for the mapping z  e
sT

 

 a large amount of frequency distortion occurs 

A measure of the distortion can be obtained by considering the 

relationship between c  in the s-domain and d  in the z-domain 

 i.e. s  jc  and z  e
jdT

 

From Tustin’s rule: jc 
2

T

e
jdT

1 
e

jdT
1 

 

  jc 
2

T

e jdT 2 e jd T 2

e
jdT 2

e
 jd T 2 

2

T

2 j sin dT 2 
2cos dT 2 

 

  c 
2

T
tan dT 2  

The distortion can be eliminated for a particular frequency of interest, 

a  by modifying Tustin’s rule: 
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 s 
a

tan aT 2 
z 1 

z 1 
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2. Pole-Zero Mapping 

An alternative approach is to use the mapping z  e
sT

. 

For a continuous signal y t , the poles of the Laplace transform Y s  

are related to the poles of the z-transform Y z  of y kT  by z  e
sT

. 

This is NOT true for the zeros of Y s  and Y z  and the z-transform 

must be obtained to locate the zeros. 

For small T, z  e
sT

 is approximately true for the zeros as well as the 

poles. 
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Heuristic Rules: 

1. All poles of D s are mapped according to z  e
sT

 

s  p  0  z e
pT

 0  

2. All finite zeros of D s  are also mapped according to z  e
sT

 

 s   0  z e
T

 0  

3. EITHER: the q zeros of D s  at s  , where q is the pole excess, are 

mapped to z  1 i.e. D z  zeros at z  1  

 OR: q 1 zeros of D s  at s   are mapped to z  1 and the 

remaining zero at s   is mapped to a zero at z   

(This leads to a D z  which has a unit delay in its impulse response.) 

4. The gain of D z  is selected to match the gain of D s  at the band 

centre, or a similar critical frequency. In most control applications, the 

critical frequency is s  0  so typically: 
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   D z 
z1

D s 
s0
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3. Zero-order Hold Equivalence 

A final approach is to consider a transformation such that D s  and 

D z  have identical step responses at the sampling instants 

 i.e. 




1

D z 
1

1 z 1








 

1

D s 
1

s



















tkT

 

or 



D z 
1

1 z 1
 

1

D s 
1

s















t  kT

 

 

 D s 

1

s









 

 

D z  1 z 1  D s 

1

s









 

i.e. 

T
ZOH D(s)

T

D(z)

The MATLAB command c2d converts 
from continuous to discrete-time:  
 - the default method is ‘zoh’ 
 - other methods are: 
 ‘foh’ 
 ‘tustin’ 
 ‘prewarp’ 
 ‘matched’ 
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This is probably the most popular approach. 
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Example: Digital Re-design of D s 
s

s2  s 25
 

{bandpass filter with a centre frequency of 0  5 rads
1

} 

First determine a suitable sampling period T: 

- consider the frequency response of the continuous system at 1.5 Hz; 

 D j   0.2   (i.e. < -14 dB) 

 suitable sampling frequency fs  2 1.5  3Hz  (but could be 

higher) 

 T 
1

3
sec  

1. a) Forward rectangular rule (FR) 

 
s

s2  s 25


z 1  T

z2  2z 1 T 2  z 1  T 25
 

  
z 1

3z2 5z 10.33


0.3333z 0.3333

z2 1.6667z  3.4444
 (unstable) 
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1. b) Backward rectangular rule (BR) 

 
s

s2  s 25


z 1  Tz

z2  2z 1 T 2z2  z 1  Tz  25
 

  
z z 1 

12.33z2 7z 3


0.0811z2 0.0811z

z2  0.5676z  0.2432
 

1. c) Tustin’s rule (TU) 

 
s

s2  s  25


2

T

z  1 

z  1 

4

T 2

z  1 
2

z  1 2


2

T

z 1 

z 1 
 25

 

  
0.6667z2 0.6667

7.444z2 2.444z  6.111


0.0896z 2 0.0896

z2 0.3283z  0.8209
 

1. d) Tustin’s rule with Prewarping (TUW) 

 
s

s2  s 25
 

a

tan aT 2 
z  1 

z  1 

a
2

tan2 aT 2 
z  1 

2

z  1 2


a

tan aT 2 
z 1 

z 1 
 25
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 
5.5029z 2 5.5029

60.8z2 10.6  49.8


0.0905z2  0.0905

z2 0.1741z 0.8189
 a 0  
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2. Pole-Zero Mapping (PZ) 

 
s

s2  s 25


s

s  0.5 j4.97  s  0.5 j4.97 
 

  
Ka

z 1 

z e
0.5 j4.97 T z e

0.5 j 4.97 T 
 

  
0.1909z 0.1909

z2 0.148z 0.7165
 

3. Zero Order Hold Equivalence (ZOH) 

 
  



s

s2  s  25
 1 z

1 Z 1

s2  s  25









 

  
  



 1 z
1 Z

 j 1
24.97

s  0.5 j4.97 


j 1
24.97

s  0.5 j4.97 








 

   1 z
1 j 1

24.97

z

z e
0.5 j4.97 T 


z

z e
0.5 j 4.97 T 














 

  
0.1695z 0.1695

z2 0.148z 0.7165
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Step Responses for Various Mappings 

 

 
0 0.5 1 1.5 2 2.5 3

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

+ BR 
x TU 
 TUW 
o PZ 
 ZOH

Time (s)
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Bode Magnitude Plots for Various Mappings 
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Digital Root Locus Design 

Again we’ve seen analysis using root locus in the z - plane 

- design is very similar to s - plane. 

There is one further consideration to do with the sampling rate: 

 

Hence the angle of a particular pole location gives the number of 

samples/cycle in the time response. 



  d

 js

2

js

2

T

s - plane z - plane
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Example: Design a compensator for a system with TF G s 
1

s2   

such that   0.5  and ts 2% 1 sec for a step input. 

 

From the specification, fd  fn 1
2
1Hz  

 choose sampling frequency 10 - 20 times higher, say fs  20 Hz  

 T  0.05 sec 

- open loop z-transfer function: 

 G z  Z
1esT

s3










T 2

2

z 1 

z 1 
2  0.00125

z 1 

z 1 
2  

 

U(s) +

- T
D(z) ZOH G(s)

Y(s)
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The root locus in the z-plane is: 

 

We require a zero near the double pole to “pull” the root locus inside 

the unit circle. 

Settling time: poles must lie within a circle of radius e
4T ts  0.8 

 - choose CL poles such that z  0.7  and   0.6 locus 

Try D z  K
z 0.7 

z  0.8 

pole required for "proper"  controller

but well away from area of interest 
 

2

+1-1

2

+1-1

requires K = 600

Roughly:
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Results: 

 

overshoot is too large but ts  is well within specification 

 - repeat design using slower settling time 

 i.e. D z   240
z  0.9 

z  0.8 
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Digital PID Control Design 

* process industries commonly use “3-term” (PID) controllers 

  
  
D s  KP 

K
I

s
KDs  

or 

  
  

D s  K 1
1

T
I
s
TDs









 

 

Consider the control system: 

The control signal (output of the 3-term controller) is: 

    u * kT  KPe * kT KIi * kT KDd * kT  

where i* and d* are the integral and derivative of the error respectively 

D(z)
+

-

U(z)W(z) Y(z)
G(z)

E(z)

input

system
digital PID 
controller

output
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We need to approximate i * kT  and d * kT . 
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Two Methods 

 • Euler’s method:

 i * kT   i * k 1 T T e * kT  [backward rectangular rule] 

 • Trapezium rule:

 i * kT   i * k 1 T 
T

2
e * kT e * k 1 T   [Tustin’s rule] 

Also: d * kT 
e * kT e * k 1 T 

T
 

In the z - domain: 

  (i) 
  
I z 

Tz

z 1
E z  

  (ii) 
  

I z 
T

2

z 1 

z 1 
E z  

 and D z  
z 1

zT
E z  

Now we need to find values for KP ,   KI  and KD  
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Ziegler - Nichols Method: closed loop 

 • empirically based, derived from studies of “perfect” systems. 

Method: 

Use proportional CL control only, start with a low gain and increase until 

plant output oscillates with constant amplitude. 

- call the period of oscillation Tu  and value of gain Ku . 

The gains to give “good” responses are: 

 • Proportional (P) Control only: 

 KP  0.5Ku  

 • Proportional + Integral (PI) Control: 

 KP  0.45Ku  
  

KI 
1.2KP

Tu


0.54Ku

Tu

 

 • Proportional + Integral + Derivative (PID) Control: 

 KP  0.6Ku  
  

KI 
1.2Ku

Tu

 KD 
0.6TuKu

8
 

Only applicable for systems which are CL stable at low gains. 
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Ziegler - Nichols Method: open loop 

 • basically the same as the continuous time design. 

 

Open loop step response: 

 • P control: KP 


NL

T1

HL


T1

KL
 

 • PI control: KP 
0.9

NL
 

  
KI 

0.3KP

L
 

 • PID control: KP 
1.2

NL
 

  
KI 

0.5KP

L
 KD  0.5LKP  

maximum slope N

L T1

H

gain K 
H



  mag. of step

t
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 Only works for stable OL type 0 systems 

 


