

Viruses and Other Acellular Infectious Agents

6.1 Viruses

- 1. Defines the terms virology, bacteriophages, and phages.
- 2. List organisms that are hosts to viruses.

Acellular Agents

- Viruses protein and nucleic acid
- Viroids only RNA
- Satellites only nucleic acids
- Prions proteins only

Viruses

- Major cause of disease
 - also importance as a new source of therapy
 - new viruses are emerging
- Important members of aquatic world
 - move organic matter from particulate to dissolved
- Important in evolution
 - transfer genes between bacteria, others
- Important model systems in molecular biology

General Properties of Viruses

- Virion
 - complete virus particle
 - consists of ≥1 molecule of DNA or RNA enclosed in coat of protein
 - may have additional layers
 - cannot reproduce independent of living cells nor carry out cell division
 - but can exist extracellularly

Virions Infect All Cell Types

- Bacterial viruses called bacteriophages (phages)
- Few archaeal viruses
- Most are eukaryotic viruses
 - plants, animals, protists, and fungi
- Classified into families based on
 - genome structure, life cycle, morphology, genetic relatedness

6.2 Virion structure

- 1. State the size range of virions.
- 2. Identify the parts of a virion and describe their function.
- 3. Distinguish enveloped viruses from nonenveloped viruses.
- 4. Describe the types of capsid symmetry.

The Structure of Viruses

- Virion size range is ~10–400 nm in diameter and most viruses must be viewed with an electron microscope
- All virions contain a nucleocapsid which is composed of nucleic acid (DNA or RNA) and a protein coat (capsid)
 - some viruses consist only of a nucleocapsid, others have additional components
- Envelopes

yright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9

Capsids

- Large macromolecular structures which serve as protein coat of virus
- Protect viral genetic material and aids in its transfer between host cells
- Made of protein subunits called protomers
- Capsids are helical, icosahedral, or complex

Helical Capsids

- Shaped like hollow tubes with protein walls
- Protomers self assemble
- Size of capsid is a function of nucleic acid

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a: Robert G. Milne, Plant Virus Institute National Research Council, Italy; c: Courtesy of Gerald Stubbs and Keiichi Namba, Vanderbilt University; and Donald Caspar, Brandeis University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Icosahedral Capsids

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- (b) a: Courtesy of Harold Fisher, University of Rhode Island and Robley Williams, University of California at Berkeley, b: © Science VU-NIH, R. Feldman/Visuals Unlimited
- An icosahedron is a regular polyhedron with 20 equilateral faces and 12 vertices
- Capsomers

(a)

- ring or knob-shaped units made of 5 or 6 protomers
- pentamers (pentons) 5 subunit capsomers
- hexamers (hexons) 6 subunit capsomers

Capsids of Complex Symmetry

- Some viruses do not fit into the category of having helical or icosahedral capsids
 - poxviruses largest animal virus
 - large bacteriophages binal symmetry
 - head resembles icosahedral, tail is helical

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6

© Harold Fisher

Viral Envelopes and Enzymes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a: © Chris Bjornberg/ Photo Researchers, Inc.; b: © Dr. Linda Stannard, UCT/Photo Researchers, Inc.

- Many viruses are bound by an outer, flexible, membranous layer called the envelope
- Animal virus envelopes (lipids and carbohydrates) usually arise from host cell plasma or nuclear membranes

Viral Envelope Proteins

- Envelope proteins, which are viral encoded, may project from the envelope surface as spikes or peplomers
 - involved in viral attachment to host cell
 - e.g., hemagglutinin of influenza virus
 - used for identification of virus
 - may have enzymatic or other activity
 - e.g., neuraminidase of influenza virus
 - may play a role in nucleic acid replication

Virion Enzymes

- It was first erroneously thought that all virions lacked enzymes
- Now accepted that a variety of virions have enzymes
 - some are associated with the envelope or capsid but most are within the capsid

Viral Genome

- Diverse nature of genomes
- A virus may have single or double stranded DNA or RNA
- The length of the nucleic acid also varies
 from virus to virus
- Genomes can be segmented or circular

6.3 Viral multiplication

- 1. Describe the five steps common to the life cycles of all viruses.
- 2. Discuss the role of receptors, capsid proteins, and envelope proteins in the life cycles of viruses.
- 3. Describe the two most common methods for virion release from a host cell.

Viral Multiplication

- Mechanism used depends on viral structure and genome
- Steps are similar
 - attachment to host cell
 - entry
 - uncoating of genome
 - synthesis
 - assembly
 - release

Attachment (Adsorption)

- Specific receptor attachment
- Receptor determines host preference
 - may be specific tissue (tropism)
 - may be more than one host
 - may be more than one receptor
 - may be in lipid rafts providing entry of virus

Viral Entry and Uncoating

- Entire genome or nucleocapsid
- Varies between naked or enveloped virus
- Three methods used
 - fusion of the viral envelope with host membrane; nucleocapsid enters
 - endocytosis in vesicle; endosome aids in viral uncoating
 - injection of nucleic acid

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Entry of enveloped virus by fusing with plasma membrane

and enter the cytoplasm.

Synthesis Stage

- Genome dictates the events
- ds DNA typical flow
- RNA viruses
 - virus must carry in or synthesize the proteins necessary to complete synthesis
- Stages may occur, e.g., early and late

Assembly

- Late proteins are important in assembly
- Assembly is complicated but varies
 - bacteriophages stages
 - some are assembled in nucleus
 - some are assembled in cytoplasm
 - may be seen as paracrystalline structures in cell

Virion Release

- Nonenveloped viruses lyse the host cell
 - viral proteins may attack peptidoglycan or membrane

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Enveloped viruses use budding
 - viral proteins are placed into host membrane
 - nucleocapsid may bind to viral proteins
 - envelope derived from host cell membrane, but may be Golgi, ER, or other
 - virus may use host actin tails to propel through host membrane

6.4 Types of viral infections

- 1. Compare and contrast the major steps of the life cycles of virulent phages and temperate phages.
- 2. List examples of lysogenic conversion.
- 3. Differentiate among the types of viral infections of eukaryotic cells.
- 4. Summarize the current understanding of how oncoviruses cause cancer.

Types of Viral Infections

- Infections in Bacteria and Archaea
- Infections in eukaryotic cells
- Viruses and cancer

Bacterial and Archaeal Viral Infections

- Virulent phage one reproductive choice
 - multiplies immediately upon entry
 - lyses bacterial host cell
- Temperate phages have two reproductive options
 - reproduce lytically as virulent phages do
 - remain within host cell without destroying it
 - many temperate phages integrate their genome into host genome (becoming a 'prophage' in a 'lysogenic bacterium') in a relationship called lysogeny

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Lysogenic Conversion

- Temperate phage changes phenotype of its host
 - bacteria become immune to superinfection
 - phage may express pathogenic toxin or enzyme
- Two advantages to lysogeny for virus
 - phage remains viable but may not replicate
 - multiplicity of infection ensures survival of host cell
- Under appropriate conditions infected bacteria will lyse and release phage particles
 - occurs when conditions in the cell cause the prophage to initiate synthesis of new phage particles, a process called induction

Archaeal Viruses

- May be lytic or temperate
- Most discovered so far are temperate by unknown mechanisms

Infection in Eukaryotic Cells

- Cytocidal infection results in cell death through lysis
- Persistent infections may last years
- Cytopathic effects (CPEs)
 - degenerative changes
 - abnormalities
- Transformation to malignant cell

Viruses and Cancer

- Tumor
 - growth or lump of tissue;
 - benign tumors remain in place
- Neoplasia
 - abnormal new cell growth and reproduction due to loss of regulation
- Anaplasia
 - reversion to a more primitive or less differentiated state
- Metastasis

spread of cancerous cells throughout body

Carcinogenesis

- Complex, multistep process
- Often involves oncogenes
 - cancer causing genes
 - may come from the virus OR may be transformed host proto-oncogenes (involved in normal regulation of cell growth/differentiation)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 6.1	Some Viruses Associated with Human Cancers				
Virus		Genome Type	Cancer		
Human herpesvirus 8 (HHV8)		Double-stranded (ds) DNA	Several, including Kaposi's sarcoma		
Epstein-Barr virus (EBV)		dsDNA	Several, including Burkitt's lymphoma and nasopharyngeal carcinoma		
Hepatitis B virus		dsDNA	Hepatocellular carcinoma		
Hepatitis C virus		Single-stranded (ss) RNA	Liver cancer		
Human papillomaviruses (HPV) strains 6, 11, 16, and 18		dsDNA	Cervical cancer		
Human T-cell lymphotropic virus1 (HTLV-1)		ssRNA (retrovirus)	T-cell leukemia		

Possible Mechanisms by Which Viruses Cause Cancer

- Viral proteins bind host cell tumor suppressor proteins
- Carry oncogene into cell and insert it into host genome
- Altered cell regulation
- Insertion of promoter or enhancer next to cellular oncogene

6.5 Cultivation and enumeration of viruses

- List the types of approaches used to cultivate viruses, noting which types of viruses are cultivated by each method.
- 2. Describe three direct counting methods and two indirect counting methods used to enumerate viruses.
- 3. Outline the events that lead to the formation of a plaque in a lawn of bacterial cells.
- 4. Distinguish lethal dose from infectious dose.

The Cultivation of Viruses

• Requires inoculation of appropriate living host

Hosts for Bacterial and Archael Viruses

- Usually cultivated in broth or agar cultures of suitable, young, actively growing bacteria
- Broth cultures lose turbidity as viruses
 reproduce
- Plaques observed on agar cultures

Hosts for Animal Viruses

- Tissue (cell) cultures
 - cells are infected with virus (phage)
 - viral plaques
 - localized area of cellular destruction and lysis that enlarge as the virus replicates
- Cytopathic effects (CPEs)
 - microscopic or macroscopic

degenerative changes or abnormalities in host cells and tissues

Embryonated eggs

Copyright © The McGraw-Hill Companies. Inc. Permission required for reproduction or display

© Terry Hazen/Visuals Unlimited

Hosts for Plant Viruses

- Plant tissue cultures
- Plant protoplast cultures
- Suitable whole plants

 may cause localized
 necrotic lesions or
 generalized symptoms
 of infection

Copyright © The McGraw-Hill Companies. Inc. Permission required for reproduction or display.

Charles Marden Fitch

Quantification of Virus

- Direct counting count viral particles
- Indirect counting by an observable of the virus
 - hemagglutination assay
 - plaque assays

Measuring Concentration of Infectious Units

- Plaque assays
 - dilutions of virus preparation made and plated on lawn of host cells
 - number of plaques counted
 - results expressed as plaque-forming units
 (PFU) plaque forming units (PFU)
 - PFU/ml = number of plaques/sample dilution

Measuring Biological Effects

- Infectious dose and lethal dose assays
 - determine smallest amount of virus needed to cause infection (ID) or death (LD) of 50% of exposed host cells or organisms (ID_{50} or LD_{50})

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6.6 Viroids and satellites

- 1. Describe the structure of a viroid and discuss the practical importance of viroids.
- 2. Distinguish satellite viruses from satellite nucleic acids.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Viroids

- infectious agents • composed of closed, circular ssRNAs
- do not encode gene products
- requires host cell **DNA-dependent RNA** polymerase to replicate
- cause plant diseases

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

\sim							
\sim	$\sim\sim\sim$	\sim	\sim				
\sim	~		·	\sim			
Left	Pathogenicity	Central conserved	Variable	Right			
terminal	domain	region	domain	terminal			
domain	(P)	(CCR)	(V)	domain			
(T _L)				(T _B)			

49

Satellites

- Infectious nucleic acids (DNA or RNA)
 - Satellite viruses encode their own capsid proteins when helped by a helper virus
 - Satellite RNAs/DNAs do NOT encode their own capsid proteins
- Encode one or more gene products
- Require a helper virus for replication
 - human hepatitis D virus is satellite
 - requires human hepatitis B virus

6.7 Prions

- 1. Describe prion structure and how prions are thought to replicate.
- 2. List characteristics common to all animal diseases caused by prions.
- 3. Name at least two human diseases caused by prions.
- 4. Describe the mechanisms by which a prion protein might first appear in a brain cell.

Prions – Proteinaceous Infectious Particle

- Cause a variety of degenerative diseases in humans and animals
 - scrapie in sheep
 - bovine spongiform encephalopathy (BSE) or mad cow disease
 - Creutzfeldt-Jakob disease (CJD) and variant
 CJD (vCJD) in humans
 - kuru in humans

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Current Model of Disease Production by Prions

- PrP^C (prion protein) is present in "normal" form (abnormal form of prion protein is PrP^{Sc})
- PrP^{Sc} causes PrP^C protein to change its conformation to abnormal form
- newly produced PrP^{Sc} molecules convert more normal molecules to the abnormal form through unknown mechanism

Neural Loss

- Evidence suggests that PrP^C must be present for neural degeneration to occur
- Interaction of PrP^{Sc} with PrP^C may cause PrP^C to crosslink and trigger apoptosis
- PrP^C conversion causes neuron loss, PrP^{Sc} is the infectious agent
- All prion caused diseases
 - have no effective treatment
 - result in progressive degeneration of the brain and eventual death