
Reining in the Web with Content Security Policy

Sid Stamm
Mozilla

sid@mozilla.com

Brandon Sterne
Mozilla

bsterne@mozilla.com

Gervase Markham
Mozilla

gerv@mozilla.org

ABSTRACT
The last three years have seen a dramatic increase in both
awareness and exploitation of Web Application Vulnerabili-
ties. 2008 and 2009 saw dozens of high-profile attacks against
websites using Cross Site Scripting (XSS) and Cross Site Re-
quest Forgery (CSRF) for the purposes of information steal-
ing, website defacement, malware planting, clickjacking, etc.
While an ideal solution may be to develop web applications
free from any exploitable vulnerabilities, real world security
is usually provided in layers.

We present content restrictions, and a content restrictions
enforcement scheme called Content Security Policy (CSP),
which intends to be one such layer. Content restrictions al-
low site designers or server administrators to specify how
content interacts on their web sites—a security mechanism
desperately needed by the untamed Web. These content
restrictions rules are activated and enforced by supporting
web browsers when a policy is provided for a site via HTTP,
and we show how a system such as CSP can be effective to
lock down sites and provide an early alert system for vulner-
abilities on a web site. Our scheme is also easily deployed,
which is made evident by our prototype implementation in
Firefox and on the Mozilla Add-Ons web site.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Information
Browsers; H.3.5 [Online Information Services]: Web-
based Services; D.4.6 [Security and Protection]: Infor-
mation Flow Controls

General Terms
Design, Security

Keywords
content restrictions, web security, security policy, http

1. INTRODUCTION
In the shadow of all the problems stemming from web

mash-ups and content injection attacks on the web, it seems
attractive to tighten control on the domains. Web “hack-
ers” are often able to use Cross–Site Request Forgeries [14]
or Cross–Site Scripting [2] to move data between domains,

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

exploiting browser or site-specific vulnerabilities to steal or
inject information.

Additionally, browser and web application providers are
having a hard time deciding what exactly should be a “do-
main”or “origin”when referring to web traffic. With the ad-
vent of DNS rebinding [8] and with the gray area regarding
ownership of sibling sub-domains (like user1.webhost.com

versus user2.webhost.com), it may be ideal to allow the
service providers who write web applications the opportu-
nity to specify, or fence-in, what they consider to be their
domain.

1.1 Uncontrolled Web Platform
Web sites currently execute in a mostly uncontrolled web

browser environment. The sole protection currently afforded
to websites with regards to policies restricting content is
the same–origin policy (SOP) [20]. Although this policy is
deployed in browsers, attackers are still able to subvert the
policy by directly attacking the site and injecting their own
script into the content. For example, an attacker may post a
message to messageboard.com that is rendered for all future
visitors to the site. In his message, he includes some HTML
that loads a script from evil.com, his website. Suddenly
all visitors to the message board site are running arbitrary
evil.com code within the messageboard.com domain.

More generally, the attacker could also insert references
to arbitrary images or style sheets to alter the appearance
of the web site; though this is often considered as a less
significant attack, it is yet more evidence that a vulnerability
in a web site can lead to significant changes to its appearance
or operation.

This lack of control is exemplified by iframe injections used
to poison search engine rankings of some popular sites [5].
In this attack, some popular sites’ validation input is cir-
cumvented to inject an iframe onto a site’s search results
page. After the injection, all browsers that render the page
inadvertently load an iframe that points to data served by
the attacker. That page then attacks the visitor’s browser
through a browser vulnerability like codec installation, Ac-
tiveX objects or other drive-by downloading techniques, and
search engines reduce the ranking of these victim sites since
they may be classified as malware. This problem exploited
by the attackers has two parts: (1) the web application does
not properly validate input and (2) after the data is injected,
a visit to victimsite.com causes a browser to load the at-
tack page on evilsite.com. We argue that although the
input validation is important, it is never perfect; the vic-
tim site should be able to specify which sites are trusted
and then rely on the visitors’ browsers to forbid loading re-

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

921

sources from untrusted sites like evilsite.com, reducing the
abilities an attacker gains through a successful XSS hack.

A way for a web site designer to dictate the behavior of
the site is needed, and with assistance from web browsers,
such a feature should limit the site’s behavior to what is
expected. Any other content loads, requests, or abnormal
behavior should be blocked as deviation from what is ex-
pected. Such a content restrictions feature would give web
authors more control over data on their site—even as third
party content is used. We argue that content restrictions
should be used to control sites and propose an implemen-
tation of content restrictions called Content Security Policy
(CSP), that does exactly this.

Cross-Site Scripting Attacks. In 2008 and 2009, cross-site
scripting (XSS) attacks have remained the most wide-spread
and frequently occuring vulnerability on web sites [6]. While
it may not be clear why XSS is so common, this evidence is
an incentive to find a new way to block XSS. While many
vendors and framework providers have helped with XSS fil-
ters, attackers regularly find new ways to inject and run
script on a victim page. Perhaps it is time to approach
the problem from a different angle: instead of only filtering
scripts from being inserted into a page, we can also disable
invading scripts as they attempt to run.

Data Leak Attacks. Currently, web sites are at liberty to
embed content from wherever else they wish. For example,
mysite.com/index.html can embed images from mysite.

com, or it may contain references to images anywhere else on
the Internet like webcounter.com/images/count.cgi. The
effects of this embedding policy are twofold: data is loaded
from a third party site, and (less obviously) information is
transmitted to that third party site in the form of the HTTP
request. Not always is it the case that an adversary wants to
embed malicious code on a site—it may be success enough
for them to simply see HTTP requests.

Modern web browsers don’t strongly enforce any rules on
what can be embedded or referenced by a web site, opening
up many vulnerabilities, especially considering the mash-up
culture of Web 2.0. As a result, web applications may be
leaking data back to one of the contributors, or an un-trusted
third party. In the case of websites that have been compro-
mised by content injection or those that contain cross-site-
request forgeries generated by site contributors, the data
leaked to a contributor could be as mild as IP addresses of
all site visitors, or as severe as passwords or bank account
numbers for all visitors. We call these types of attack data
leak attacks.

Since there are many beneficial uses for the ability to em-
bed off-site resources (web counters, traffic analyzers, adver-
tisements), it is not in the best interest of anyone to outright
reject this behavior. There are, however, some cases with
scripts where there is enough potential for malicious code or
sensitive data leak that web browsers should block certain
requests, such as in the case of the iframe injection attack.

1.2 Contribution
We propose content restrictions be employed on websites—

restrictions that give web application authors control over
the content embedded on their site. We also propose an im-
plementation of this called Content Security Policy (CSP);
CSP will enable application developers to lay out content

loading rules for their web site that will be enforced by the
browser. When enforced, these rules limit what types of con-
tent may be requested for inclusion on the site, as well as
where the content may be loaded from. We show how CSP
can be employed as a mechanism to help discover and thwart
cross-site scripting (XSS), data leak attacks, and other types
of currently unknown attacks that lead to an unpredictable
web site experience.

Even if the web developers lose control over the page’s
content, such as in the case of cross-site scripting and SQL-
injection attacks, the attacker will have limited ability to
affect the site’s behavior since he will be unable to (1) im-
port third party content onto the site and (2) make requests
to third party URIs to extract content from the site. Our
solution is implemented in the HTTP protocol—outside the
scope of any code running in a browser document—so that
the security controls can be erected outside of the sandbox
where web content is rendered.

We also contribute a proof-of-concept implementation that
provides a prototype implementation of our scheme on both
a complex web site and in a popular web browser, showing
that it is practical. We also compare our solution to others in
the field and show how ours provides an early-warning sys-
tem not present in others, does not create a large amount
of network overhead, and cannot be used to reduce the se-
curity of a web site. Finally, we show our scheme is gradu-
ally deployable — it does not rely on complete adoption to
work, and can be rolled out gradually onto web servers and
browsers, increasing the general security of the web as it is
deployed.

1.2.1 Goals of our Scheme
Our proposed scheme is intended to provide a site’s ad-

ministrators control over behavior and appearance of their
site S with a rule set that dictates what may load onto the
site and into what contexts (image, script, etc). Addition-
ally, our scheme will help protect visitors of a web site S
such that the information they provide the site will only be
transmitted to S or other hosts authorized by S, preventing
aforementioned data leak attacks. This policy will hold even
if S is attacked by a web-based adversary who attacks the
site through a web browser using some sort of data injection
technique to perform cross-site scripting or inject additional
code onto the site. Additionally, only scripts served from
whitelisted origins will execute, minimizing the chance of
XSS attacks on a site. Finally, our scheme will allow a site
to specify in which frames it may be rendered; allowing a
site to specify what other sites may enframe it minimizes
potential for clickjacking.

Control Over Content Used on a Site: If our scheme is
implemented correctly, an adversary who is able to
augment the website with arbitrary JavaScript, HTML
or CSS code will only be limited to the text he is able
to inject: not only will he be unable to load third-
party resources on the site, he also will not be able to
transmit data to hosts not authorized by S.

Increased Security against XSS Attacks: A site employ-
ing our scheme and containing reflected or persistent
XSS vulnerabilities will be protected when it is ren-
dered in a browser that also supports our scheme. The
script injected by an attacker will not execute, and the
site owner will be warned of the vulnerability.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

922

Clickjacking Avoidance: When our scheme is implemented
correctly, an adversary who embeds a protected site S
into his will not be able to invisibly overlay the pro-
tected content of S in order to“force clicks” that a user
intends for the attacker’s site to pass through invisi-
bly to S. In essence, a site protected by CSP cannot
be used as an unintended target for clicks stolen and
redirected by an attacker.

Only Tightened Security: Additionally, our scheme will
not introduce new ways for an adversary to glean in-
formation from visitors browsers, is robust (a site that
mis-implements our scheme will have no less security
than one that does not use our scheme), and cannot be
used by an adversary to interrupt a site’s operability.

Feasibility: Finally, our scheme will not incur major ex-
pense in construction, memory consumption, or pro-
cessing time overhead, and will be easily adopted grad-
ually; without change, current websites will operate
properly in browsers supporting our new scheme, and
conversely, web sites that do not support our scheme
will still work properly in browsers that do.

1.2.2 Organization
The remainder of this paper is structured as follows: Sec-

tion 2 describes how our scheme works and what it accom-
plishes, along with a detailed description of policy language
and sample uses. In section 3 we compare our approach of
content restrictions to other systems with similar goals, ex-
hibiting the novelty and effectiveness of content restrictions
and CSP. In section 4 we discuss how CSP is easily imple-
mented, including a summary of how it can be adopted by
browsers and sites. We show in section 5 how CSP can be
effective even when gradually deployed, as well as how even
a few supporting browsers can help protect a site’s entire
user base. Future extensions of our work are suggested in
Section 6.

2. CONTENT SECURITY POLICY
CSP is activated by a client’s browser when the

X-Content-Security-Policy HTTP header is provided in
a HTTP response. The contents of the header either state
the policy that will be enforced by the browser, or point to
a file that contains the text of the policy; this file must be
served from the same origin (scheme, host and port) as the
protected document.

The purpose of the policy is to specify which types of
resources may be loaded and from where they may be re-
quested; additionally, options can be specified that modify
the strictness of enforcement.

2.1 Base Restrictions
When CSP is activated on a page, a few features are au-

tomatically disabled to support XSS protection. These fea-
tures can be re-enabled through the options directive, but
when re-enabled may open a site to XSS through various
techniques. These restrictions are fundamental to any con-
tent restrictions implementation, not just CSP, since a script
injected by an attacker can easily manipulate content on the
site.

Base Restriction 1: No Inline Scripts Will Execute. XSS
attacks are possible because the browser has no way to dif-
ferentiate between content the server intended to send and
content injected by an attacker. Content Security Policy
forces the separation of code from content and requires au-
thors to be explicit about the code they intend to execute by
placing such code in externally referenced files. The result
of disabling inline scripts renders any script injected into a
document inoperable. Specifically, features disabled by this
restriction are:

• Text content of <script> tags.

• javascript: URIs (those that cause script to execute
in the context of the protected document).

• event-handling attributes of HTML tags

Behavior previously obtained through use of these now-
forbidden features can be maintained using other still-permitted
features:

• Text content of <script> tags can be moved to exter-
nally referenced files.

• javascript: URIs are generally used as a substitute
for onclick event handlers, and can be converted to
JS functions and initiated as an event handler.

• event-handling on HTML tags can be accomplished
through JavaScript by obtaining a reference to the el-
ement and then either (1) setting the on* properties of
an element, e.g.:
element.onclick = myFunction;

or (2) using:
element.addEventListener("event", myFunction);

Base Restriction 2: Strings May Not Become Code.
The eval() function and related functions make trivial the
task of generating code from strings, which commonly come
from untrusted sources. These strings are often loaded via
insecure protocols, and can become tainted with attacker
controlled data. Once tainted data has been introduced to
a JavaScript program, it is extremely difficult to control its
propagation and calls to eval and similar are likely to incor-
porate tainted strings containing malicious code. As a result,
calls to the JavaScript function eval() are blocked by CSP,
as are any equivalent functions setTimeout, setInterval

and the Function constructor that all take a string repre-
senting code as an argument.

We argue that most code using eval() can be rewritten
without the function call itself, and that calls to setTimeout

and setInterval can be rewritten to use their non-string-
argument variants.

2.2 Policy Language
Aside from the base restrictions, a Content Security Pol-

icy is composed of directives; each directive states how the
behavior of the browser should be modified on the protected
document. Most of the directives control from where a type
of resource may be loaded. A few are different, and will be
described separately. This section only serves to summarize
the policy language; a detailed syntax can be found in [4].

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

923

URI Directives. The content restrictions provided by CSP
are available through URI directives. These directives spec-
ify classes of network requests that may be issued by the
browser, and the directives’ values specify to where the re-
quests may be made. The directives supported by CSP, and
what they regulate are:

• font-src: requests generated by @font-src CSS code.

• frame-ancestors: regulating what sites may embed
the protected resource as an iframe or frame element.

• frame-src: requests that will be rendered as subordi-
nate frames of the protected page.

• img-src: requests that will be loaded as images.

• media-src: requests targeted by a <video> or <audio>
element.

• object-src: requests targeted by an <object>, <embed>
or <applet> element.

• script-src: requests that will be interpreted and ex-
ecuted as scripts.

• style-src: requests that will be interpreted and exe-
cuted as style sheets.

• xhr-src: requests generated by XMLHttpRequests.

Aside from these directives, a catch-all directive called
allow must be defined in every policy. This directive regu-
lates requests in two cases: if the request cannot be classified
into any other URI directives, or if the directive correspond-
ing to the request type is not defined in the policy. The
allow directive is required by CSP in order to stipulate the
“default behavior” for missing directives or unclassified re-
quests.

The policy-uri Directive. If present in the HTTP header,
the value of this directive points to a file that contains the
policy to enforce. This directive must appear alone in the
header or it is ignored. The contents of the policy file are
identical to the contents of an equivalent CSP HTTP header,
only served via an external file so the policy (which may be
large) can be cached. The URI specified as the policy-uri

must be served by the same origin (scheme, host and port)
as the protected document.

The options Directive. This directive can be used to mod-
ify the underlying behavior of CSP, including to remove one
or both of its base restrictions. The directive’s value is
a space-separated list of tokens. Inserting inline-script

in the options directive removes Base Restriction 1. eval-

script in the directive value removes Base Restriction 2.

The report-uri Directive. If present in a policy, its value
is a URI where notifications of policy violations will be sent.
The URI must possess the same scheme, and public suffix
plus base domain name, or it will be ignored.1 This prevents
sensitive data (cookies or session information) from being
transmitted off-site to an attacker.

1A public suffix is a domain under which users may regis-
ter their own domain name. For example, .co.uk, .com, or
.pvt.k12.wy.us. See http://publicsuffix.org.

2.2.1 Violation Reports
To provide an early-warning system, so that a site’s ad-

ministrators can be notified when an injection attack may
be occurring, CSP implements violation reporting. When
a report-uri is provided and a policy is violated, informa-
tion about the protected resource and the violating content
is transmitted to the report-uri via HTTP POST if available
in the employed scheme, otherwise an appropriate “submit”
method is used. This report is an XML document containing
the following fields:

request HTTP request line of the resource whose policy
is violated (including method, resource, path, HTTP
version)

request-headers HTTP request headers sent with the re-
quest (above) for the CSP-Protected content

blocked-uri URI of the resource that was blocked from
loading due to a violation in policy

violated-directive The policy section that was violated
(e.g., “script-src *.mozilla.org”).

original-policy The original policy as served in the X-
Content-Security-Policy HTTP header (or if there were
multiple headers, a comma separated list of the poli-
cies)

An XML Schema for the violation reports can be found
in [4]. In the case where a protected resource is not rendered
because the frame-ancestors directive was violated, blocked-
uri is not sent and is assumed to be the same as the request
URI. The reason for this is because this situation is differ-
ent from other policy violations: no third-party content was
blocked, rather the protected content elected not to load
since it does not trust the sites that have enframed it.

2.2.2 Example Policies
Often, the easiest way to explain semantics of a policy

language is through examples. Here we provide samples that
are illustrative, though not exhaustive.

Example 1. Site wants all content to come from its own
domain:

X-Content-Security-Policy: allow ’self’

In this example, requests for all types of resources (images,
scripts, etc) must come from the same origin as the protected
document.

Example 2. Auction site wants to allow images from any-
where, plug–in content from a list of trusted media providers
(including a content distribution network), and scripts only
from its server hosting sanitized JavaScript:

X-Content-Security-Policy: allow ’self’; img-src *;

object-src media1.com media2.com *.cdn.com;

script-src trustedscripts.example.com

Example 3. Online payments site wants to ensure that all
of the content in its pages is loaded over SSL to prevent at-
tackers from eavesdropping on requests for insecure content:

X-Content-Security-Policy: allow https://*:443

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

924

2.3 Protections via CSP

Control over Content Used on a Site:
Because of the whitelisting nature of CSP, any site
not explicitly allowed by a policy cannot be the target
of any web requests that are automatically generated
during the page’s parsing and runtime. Simply put, if
something on the page attempts to initiate a connec-
tion to any host on the Internet, it first must be autho-
rized by CSP. Web links are the exception to this rule:
if a user clicks a link, the page will redirect to that site
without asking if the target is allowed by CSP. This
is different than the automatically-triggered types of
requests blocked by CSP, and deception (convincing a
user to click a link) is beyond the scope of CSP.

Increased Security against XSS Attacks:
Type I-II XSS: In order for an attacker to run script
on a page protected with CSP he must:

1. Inject a <script src="..."> tag into the docu-
ment

2. Point that tag to a script served from a whitelisted
origin (See Section 2.2).

3. Control the contents of the referenced script.

This protection is mainly accomplished via the CSP
Base Restrictions. Since arbitrary inline script in the
protected page cannot execute, injected scripts will
simply not be evaluated. Additionally, if an attacker
were able to taint a string that is passed to eval() (or
any related functions that evaluate arbitrary strings),
the evaluation of the tainted string would not proceed
since these functions are disabled by CSP. Finally, if
an attacker is able to inject arbitrary HTML into the
DOM of a page, resulting in the addition of a <script>

tag that points to a script he controls, it is subject to
the content restrictions of the CSP (as enumerated in
the script-src directive). If his site is not explicitly
trusted by the creators of the protected page, the re-
quest will not be issued to fetch his script, and the
attack will fail.

Clickjacking Avoidance: With the frame-ancestors di-
rective, a protected page can decide what other pages
it trusts to embed it. When loaded by an attacker’s
site, a protected page will not be rendered since the
attacker’s site is not explicitly allowed by the
frame-ancestors directive — or if it is not present in
the policy, the allow directive.

Only Tightened Security: When CSP is used by both
client and server (or by only one of the pair), it will
not reduce the security of a web site. This is because
CSP does not provide new functionality or abilities to
a site, but rather locks down what the site can do. An
attacker who is able to compromise a CSP header (or
policy file) cannot write a policy that makes a site less
secure than it would have been without CSP. When
implemented properly as a layer of security (and not
the only protection mechanism), CSP can effectively
tighten a site’s security by restricting what it can do
under control of an attacker.

Feasibility: As we will show in Section 4, CSP can be eas-
ily deployed, even gradually, in a popular browser and
a complex and popular web site. A CSP–support-
ing browser will simply not enforce any policy on a
site that does not provide a CSP. Additionally, CSP–
supporting web sites will still function without any ob-
vious flaws in a non-supporting browser.

3. RELATED WORK
Reis et al write about a fundamental need for a way to

draw boundaries around programs, unwanted code, programs
in the browser, and other pieces of web sites [19]. They ex-
plain how uniform security policies can’t be applied since
there are many different types of code that execute in a
browser. We take the problem of boundaries identified by
Reis et al [19], and define a way to specify a boundary for a
given web application, and then enforce it.

Jackson et al have previously presented a more restric-
tive same-origin policy (SOP) [11, 10, 9] that is designed to
protect victims of attacks like invasive browser history sniff-
ing [12]. Their idea is that each domain’s state should be
completely isolated with respect to history and cache. This
creates a sandbox for each domain, but does not address
the threat of scripts loaded unintentionally or inadvertently
from another domain. While this approach provides addi-
tional privacy in the form of restricting a site A loaded in
a visitor’s browser from inferring information about other
websites, it does not provide the inverse: prevention of a
site X leaking data about itself to A, an external site not
loaded by the visitor’s browser.

In order to stop data leak attacks through a SOP, the
policy must be strict about where resources are located; for
example, a website from x.com would only be able to load
dynamic content such as scripts and plug-in data (SWF files,
Java Applets, ActiveX controls) from the domain x.com.
This is not a desirable approach (blocking all content from
outside a domain), since many sites depend on loading re-
sources from other domains. In fact, this external resource
loading is a pivotal feature of what people are calling Web
2.0: sharing and disseminating information freely. Instead of
a strictly DNS-based origin that is enforced by the browser,
it would be more flexible to allow the creators of the site
identify which domains or hosts can be part of its origin. In
this fashion, a web site A is not always separated from all
other hosts, but instead A should be able to identify from
which other hosts it should be isolated. A content restric-
tions implementation like CSP gives web authors this type
of control over their web pages.

Relaxing Same-Origin. James Burke proposed a policy [1]
that allows a web page to specify from where scripts are al-
lowed to be loaded and where they are not allowed to come
from. This policy refines the way that XMLHttpRequests
(AJAX) can behave much in a similar way to how we ad-
dress all resources, not just scripts. While it is useful to
control where scripts come from since they are much more
powerful than images, there is potential that a script from
a trusted origin may be corrupted through a vulnerability
in the web application. As a result, it is also important to
catch requests that might be“phoning home” to an attacker;
these can be generated not only through XMLHttpRequest
objects, but also through writing tags to the DOM.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

925

W3C is developing a mechanism that allows cross-site re-
quests to be performed using XMLHttpRequest objects [21].
The authors realize that the “all or nothing” scheme (which
is nothing when it comes to cross-domain AJAX) is too lim-
iting for today’s Web. Their proposed scheme uses a HTTP
header to specify that the request is cross-origin; the web
server is then responsible for deciding whether or not to
serve the requested data and also specify how the data can
be used. Our proposed CSP uses a similar technique with
HTTP headers, but extends the policy to that of all requests
on a web page that are not already subject to the very re-
strictive but currently implemented same-origin policy [20].
Additionally, we rely on the web browser to enforce the poli-
cies instead of the web server — this is because our goal is
to protect the visitors of a site, and not only the site itself.

Browser-Enforced Authenticity Protection. As noted by
researchers at Purdue University, the web browser can be
a powerful aid to secure the Web. They propose a system
called BEAP [15] in which the browser limits the types of
sensitive data (cookies, authentication tokens, etc) that are
transmitted with requests based on a policy inferred by the
operation of the web site—it is not stated by the site explic-
itly, but rather interpreted based on the details surrounding
the action that caused the HTTP request. The effect of
this system is that authentication and session tokens aren’t
sent when they aren’t deemed “needed” by BEAP, but the
requests are still transmitted, albeit in a safer way.

CSP is similar in that it bases policy decisions based on the
context in which a request is generated (what tag, whether it
was a script, etc.). The main difference is that CSP leverages
the browser to block all requests except for those that the
web site has explicitly granted, only allowing cookies and
other session data to be transmitted to sites trusted by the
protected page, not necessarily just in “safe” contexts.

Browser-Enforced Embedded Policies. Browsers are ef-
fective at acting as an enforcer, since they are the platform
on which web sites “run,” and given a rule set, program ex-
ecution can be mechanically regulated. One model that al-
lows sites to specify exactly what types of data are allowed is
a content-enforcement model called Browser-Enforced Em-
bedded Policies [13] (BEEP) aims to allow web applications
to specify precisely which scripts can run on its site. The
browser is then tasked with enforcing which scripts can run
and which cannot. The result is that—while an XSS attack
may insert a script into a victim web site—the script will
not run.

BEEP uses a parse-hook technique in the browser to de-
cide if a script should or should not run immediately before
it is executed. This parse-hook is a JavaScript function that
runs just before a script in question and is provided parsed
code for the script as well as DOM node of the element that
caused the script to be invoked. The implementation of the
parse-hook function is left up to the owner of the victim
web site. In short, the function calculates a cryptographic
digest string of the script’s code value and decides whether
or not the script is expected to appear on the page. Any
script whose digest value is not accepted, is canceled by the
parse-hook.

BEEP is limited to restricting specific scripts that may
run on a web site. Other types of content, such as images
and style sheets are not restricted. In addition, plug-in con-

tent (such as Adobe Flash content or Java Applets) are not
restricted by BEEP, while they are still able to run scripts in
the context of the page. A more global approach to content
restrictions, like CSP, is able to better lock down scripting
on a site due to a more holistic view of what content might
be dangerous.

MashupOS. Wang et al. from Microsoft Research have
taken an operating systems approach, called MashupOS [22],
to provide granularity not present in the same-origin policy.
They proposed a trio of new HTML tags that help a site
express its relationship to other sites it may want to use as
content libraries. These tags allow a site to specify one-way
trust for content it embeds or other content it is embedded
into. This is an improvement over the same-origin policy,
since it is no longer all-or-nothing, but there is more gran-
ularity involved in the access control granted. Our solution
allows a site to specify a policy for an entire page that is then
worked into the page regardless of the content injected. CSP
is a separate ruleset enforced by the browser that is disjoint
from the page so any modifications to the DOM or the raw
source of the web page minimize risk of breaching the secu-
rity policy.

SOMA. Terri Oda et al. from the Carleton Computer Se-
curity Lab’s SOMA policy [17] restricts resource inclusions
on web pages by requiring approval from both the target site
and resource provider. This approach restricts content based
on cooperation from both client and server sides: web sites
serve “manifest” files that tell a browser which domains will
be contributing content to the site, and the contributing do-
mains (who are providing resources) provide a service that
replies with “yes” or “no” when provided a domain name.
The browser then decides whether or not to allow requests
to be dispatched from a web page by checking its manifest
and the results of the yes/no service queries.

“SOMA constrains JavaScript’s ability to com-
municate by limiting it to mutually approved do-
mains. Since many attacks rely upon JavaScript’s
ability to communicate with arbitrary domains,
this curtails many types of exploitive activity in
web browsers. Whereas currently any web server
can be used to host malicious JavaScript or to
receive stolen information, the list of potential
attackers is narrowed significantly, either to in-
siders at the web site in question, or to one of
its approved partners. As we explain below, this
change would provide substantial additional pro-
tection in practice.” [17]

The SOMA system involves a large amount of communi-
cation between not only client and server for the document
in question, but also between client and all other third-party
content providers. While SOMA may provide a solid nego-
tiation scheme for embedding content, in practice it may be
too costly to wait for the number of round-trip queries re-
quired to render a page that contains content from many
different origins. Additionally, SOMA provides no harden-
ing of JavaScript like CSP’s base restrictions, so a site vic-
tim of content injection will still execute inline scripts even
though they’re provided by the attacker and not the web
site designers.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

926

Noncespaces. Van Gundy and Chen proposed Noncespaces
as a mechanism that helps browsers separate trusted and
untrusted content by use of XML namespaces [7]. When a
web application implements nonspaces, its server is set up
to randomize the XML namespace in a document each time
it is served. With the random nonce inserted, items lacking
the nonce as the namespace can be deemed “untrustworthy”
since they were not expected, and thus are probably injected
content.

While effective against some types of XSS attacks, Nonces-
paces does not protect from persistent data injection; this
is because the server that inserts the randomized names-
pace may also insert such namespace into server-persisting
injected content. Additionally, Noncespaces is limited to
XHTML documents, so other document types not based on
XML may not benefit from this technique.

Policies on JavaScript. Aside from the content protection
systems mentioned above, there are various policies that
have been proposed to lock down JavaScript execution to
only code that is trusted by the authors of a web applica-
tion. Although these mechanisms are not intended to re-
strict types of content that are not JavaScript, CSP can still
be used to lock down JavaScript.

BrowserShield [18] aims to provide some generic safeguards
to help minimize the chance that a user may inadvertently
run code through a browser that will exploit his computer.
(BrowserShield is similar, but not quite the same as SpyProxy,
developed by Moshchuk et al. from the University of Wash-
ington [16].) BrowserShield intercepts all JavaScript code
on a page as it executes, and rewrites it so it is subject to
an execution policy provided by the web site designers. If
the script is determined to violate the policy, its execution
is aborted. The idea of subjecting content to a policy gener-
ated by the site designers is common to content restrictions,
but BrowserShield does not discern content generated by
the content providers from that provided by some unknown
third party who can inject code into the page. While for
purposes of one type of XSS, reflected XSS, BrowserShield
is still effective, this difference illustrates how CSP stops
XSS through a different approach than JavaScript rewriters
like BrowserShield.

4. IMPLEMENTING CSP
In order to test the feasibility of CSP, we constructed a

prototype implementation on both the client and the server
side. On the client side, we modified the Firefox web browser
to support CSP. On the server side, we added a CSP header
to pages served from a copy of Mozilla’s Add-Ons web site,
and updated the site to support the CSP base restrictions.

4.1 CSP in Firefox
We implemented Content Security Policy in Firefox by

patching various parts of the code. Details and proof-of
concept can be found on Mozilla’s Bugzilla [3]. In sum-
mary, modifications to the Firefox code required the cre-
ation of a CSP parser, a service to watch for requests (and
reject ones that are forbidden by policies) and then con-
nection to all the bits of Firefox that control the base re-
strictions. The implementation adds approximately 4000
lines of code to Firefox, and is written in a combination
of C++ and JavaScript (XPCOM components, mainly). A
preview build with a prototype implementation of CSP can

be obtained from http://people.mozilla.org/~bsterne/

content-security-policy/download.html. Details about
its implementation can be found in Bugzilla [3].

4.2 CSP on addons.mozilla.org

To ensure that it is feasible to deploy CSP on a web
site, we decided to apply a policy to the website hosted
at https://addons.mozilla.org (AMO). As to not disturb
users with interruptions, we erected a mirror of the site on
a private network for development, and modified the site to
serve an X-Content-Security-Policy header with all web
pages on the site. Before actually testing CSP as we pro-
totyped it, we did a quick scan of the AMO web site to
anticipate how much of it would have to change. We noted
the following potential modifications:

• 125 instances of script tags with inline content

• 18 javascript: URIs

• 182 HTML-attribute event handlers

• 58 occurrences of eval() (mostly for the unpacking
routine provided by packed versions of shared libraries
such as JQuery)

• 3 occurrences total of new Function(), setInterval()
and setTimeout() that accepted a string argument.
Most of these were used as a substitute for eval() in
Safari, and were part of shared libraries used by the
site.

Starting with a wide-open policy (one that disables the
CSP base restrictions and allows all hosts), we observed site
behavior and logged violations. Next, one by one, we re-
enabled the two base restrictions and observed what was
blocked. We then made updates to the site so that it sup-
ported the last policy (with content restrictions and both
base restrictions enabled). Finally, we enabled content re-
strictions, only allowing requests back to the host that served
the main page, and observed if anything was blocked.

allow *; options inline-script eval-script. To begin
with, we installed the most liberal policy possible, disabling
the base restrictions and allowing all hosts. In this control
phase of our experiment, CSP should be entirely disabled
even though a policy is specified. We browsed the site2 with
the CSP-supporting Firefox (see Section 4.1) and observed
errors that were posted to the JS console as well as what
on the site failed to function. We observed no CSP-related
errors posted to the JS console, and didn’t observe any ob-
viously broken parts of the site.

allow *; options eval-script. Next, we re-enabled Base
Restriction 1 (inline scripts) and, while browsing the site,
noticed 121 inline script violations (and no other violations)
posted to the JS console. We also noticed a few parts of the
site did not function as desired — mainly some drop-down
menus were not populated, and the overlaid image preview
mechanism was replaced by one that loaded images in a new
page when clicked.

2while we did not walk the complete site (as is difficult to
do with thousands of listings on AMO), we made a diligent
effort to view each unique part of the site once, in the same
order for each part of these tests.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

927

allow ’self’; options inline-script. Next, we once again
disabled Base Restriction 1 and re-enabled Base Restriction
2 (eval scripts) and, while browsing the site, noticed one
CSP eval violation posted to the JS console (and no other
violations). This was only evident in the error console, and
did not seem to affect the behavior of the site.

allow *. Next, we updated the site to support the base re-
strictions (by modifying the majority of the code segments
identified above). This took approximately four hours for
the authors (who were not on the AMO development team
and did not have any prior knowledge of how the site op-
erated) to perform on the moderately sized web site. We
re-enabled both base restrictions and browsed the site, not-
ing no violations were posted to the JS console. We found
many of the potential violations previously identified were
in unused parts of third-party libraries, and may not have
caused any violations if those parts of the libraries were not
used by AMO.

allow ’self’. Next, we added content restrictions to the
policy, and once again methodically browsed the AMO site
that was updated to consider the base restrictions. We no-
ticed no violations were posted to the JS console, indicating
that no out-of-site requests were taking place.

Simulating vulnerabilities. Simulating an XSS vulnera-
bility, we inserted an inline script, and watched it blocked
by CSP as we loaded it in Firefox. We also inserted an

tag that pointed to an image hosted on another domain, and
watched as CSP blocked the load, posting a message to the
JavaScript error console.

5. EVALUATION
CSP can be implemented quickly by web sites, and with-

out requiring complete adoption by all browser vendors to be
effective. Take, for instance, all pairs of clients and servers
that may or may not implement our scheme:

Server and Browser Both Implement: In this ideal case,
a CSP is provided by the service provider and enforced
by the browser on the client’s computer.

Only Server: In this case, any CSPs are ignored by the
client’s browser, and the current policy (data can be
loaded from everywhere) is effective. This does not
break any web application, but may cause more data
leaking than is ideal. This client is not protected, nor
is the service provider.

Only Browser: In this case, the absence of CSP from the
service provider suggests to the browser to apply the
most relaxed policy so that data is not accidentally
blocked from loading. User’s experience is the same as
without CSP support in the browser.

No Implementation: This is the case as it is today. The
server does not specify which sources can be trusted,
and the browser trusts all.

Benefit from limited support. CSP does not have to be
widely adopted to be beneficial; a few visitors to a web site
with CSP-supporting user agents can help provide security

for the rest of a site’s visitors. This is accomplished through
the CSP violation reporting mechanism: it can serve as an
early warning system to alert the owners of a site that CSP
has discovered potential attacks or flaws in their pages. We
believe that receiving reports from even a small minority of
CSP-supporting visitors will make it worthwhile for a site
to implement CSP if they are worried about XSS attacks,
clickjacking or data leaks.

Policy Evolution. As CSP can be slowly adopted by user
agents and the whole time prove beneficial to adoptive sites,
these sites can gradually deploy more strict policies as they
are able. While the base restrictions are necessary to provide
adequate XSS protection, they can be turned off to provide a
more lenient version of CSP; turning off the base restrictions
is not advised, however.

Though even without the base restrictions, CSP can be
useful in a limited capacity: restricting what types of re-
quests may be issued automatically on the site. A site may
be more worried about blocking image loads (triggered from
inside user-provided content) from most third-party sites.
Additionally, a site’s developers may want to continue using
inline scripts until they can figure out how to efficiently move
the scripts to external files; by adding the inline-script

option, this base restriction can be disabled until the site’s
designers have updated the site.

We also propose a report-only variant of CSP: when de-
ployed, this separate HTTP header triggers CSP to only
send reports and not enforce a policy. This variant would
simulate CSP without actually blocking any scripts that may
break a site. While there are no protections afforded by this
variant, deploying a report-only policy can help site design-
ers gauge how much work will need to be done in order to
support CSP.

6. FUTURE WORK
CSP has been shown to be a robust implementation of

content restrictions, but extensions to CSP can be created
to increase its usability, or add additional protections.

While the current model requires a policy to be deliv-
ered in the HTTP headers of the document being protected,
the policy could instead be delivered once by the site and
then enforced for all documents served from the same origin.
This delivery mechanism has ramifications that are different
from the“one document for one policy” scheme that warrant
careful scrutiny before such a model is implemented.

It may also prove useful for a site to limit navigation away
from the page; perhaps clicked links and submitted forms
should also be part of the content restrictions language.
While these rules would not restrict the types of content
embedded on the page, they still dictate behavior of the site
and may be desirable for many existing web applications.

To aid in constructing a safe policy for a site, a tool should
be created that crawls the site and determines what re-
sources are loaded and from where. This tool can create
a policy based on the site’s “expected behavior,” and then
implemented in CSP, any deviations from that policy can be
reported. The current method of manually creating a policy
may be difficult for more complex sites.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

928

7. CONCLUSIONS
We propose the use of content restrictions to lock down

web sites behavior, and have provided an implementation
of content restrictions called Content Security Policy. CSP
provides not only an ability for web sites to specify what
types of content may be loaded (and from where), but also
some protection from cross-site scripting and other common
web attacks such as clickjacking.

While a site should not rely on something like CSP to
provide a complete suite of security, CSP can be used as
an early warning mechanism for attacks that appear in the
wild, and even when not widely adopted by a majority of the
web browser market, can prove a useful layer in protecting
web applications and their users.

8. ACKNOWLEDGEMENTS
The authors would like to thank Adam Barth for all his

rigorous scrutiny of CSP as it evolved. Robert “RSnake”
Hansen also helped provide feedback in the early stages of
the project, and helped publicize content restrictions as a
new way of thinking about web security. The authors are
grateful for recent feedback provided by Collin Jackson, Dan
Boneh and the Stanford Security lab at large. Dan Veditz,
Lucas Adamski, Jonas Sicking and other members of the
Mozilla family have provided the authors indispensable sup-
port for architecting and implementing CSP in Firefox.

9. REFERENCES
[1] J. Burke. Jsonrequest, part 2 (cross domain policy for

all). Blog, March 2006. URL:
http://tagneto.blogspot.com/2006/03/

jsonrequest-part-2-cross-domain-policy.html.

[2] S. Cook. A web developer’s guide to cross-site
scripting, January 2003.
http://www.giac.org/practical/GSEC/Steve_Cook_GSEC.

[3] M. Corporation. Bug 493857: Implement content
security policy.
https://bugzilla.mozilla.org/show bug.cgi?id=csp,
May 2009.

[4] M. Corporation. Content security policy formal
specification.
https://wiki.mozilla.org/Security/CSP/Spec, May
2009.

[5] D. Danchev. Mass iframe injectable attacks, March
2008.
http://ddanchev.blogspot.com/2008/03/

massive-iframe-seo-poisoning-attack.html.

[6] J. Grossman. Whitehat website security statistics
report. Whitepaper, WhiteHat,
http://www.whitehatsec.com/home/assets/WPstats0808.pdf,
August 2008.

[7] M. V. Gundy and H. Chen. Noncespaces: Using
randomization to enforce information flow tracking
and thwart cross-site scripting attacks. In Proceedings
of the 16th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA,
Feb. 8-11, 2009.

[8] C. Jackson, A. Barth, A. Bortz, W. Shao, and
D. Boneh. Protecting browsers from dns rebinding
attacks. In CCS ’07: Proceedings of the 14th ACM
conference on Computer and communications security,
pages 421–431, New York, NY, USA, 2007. ACM.

[9] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Stanford safecache. http://www.safecache.com.

[10] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Stanford safehistory. http://www.safehistory.com.

[11] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Protecting browser state from web privacy attacks. In
WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 737–744, New
York, NY, USA, 2006. ACM.

[12] M. Jakobsson and S. Stamm. Invasive browser sniffing
and countermeasures. In WWW ’06: Proceedings of
the 15th international conference on World Wide Web,
pages 523–532, New York, NY, USA, 2006. ACM.

[13] T. Jim, N. Swamy, and M. Hicks. Defeating script
injection attacks with browser-enforced embedded
policies. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages
601–610, New York, NY, USA, 2007. ACM.

[14] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing
cross site request forgery attacks. In the IEEE
International Conference on Security and Privacy for
Emerging Areas in Communication Networks
(Securecomm), pages 1–10, September 2006.

[15] Z. Mao, N. Li, and I. Molloy. Defeating cross-site
request forgery attacks with browser-enforced
authenticity protection. In Financial Cryptography
and Data Security: 13th International Conference, FC
2009, Accra Beach, Barbados, February 23-26, 2009.
Revised Selected Papers, pages 238–255, Berlin,
Heidelberg, 2009. Springer-Verlag.

[16] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble,
and H. M. Levy. Spyproxy: execution-based detection
of malicious web content. In SS’07: Proceedings of
16th USENIX Security Symposium on USENIX
Security Symposium, pages 1–16, Berkeley, CA, USA,
2007. USENIX Association.

[17] T. Oda, G. Wurster, P. V. Oorschot, and A. Somayaji.
Soma: Mutual approval for included content in web
pages. In CCS’08: ACM Computer and
Communications Security, October 2008.

[18] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir. Browsershield: vulnerability-driven filtering
of dynamic html. In OSDI ’06: Proceedings of the 7th
symposium on Operating systems design and
implementation, pages 61–74, Berkeley, CA, USA,
2006. USENIX Association.

[19] C. Reis, S. D. Gribble, and H. M. Levy. Architectural
principles for safe web programs. In Sixth Workshop
on Hot Topics in Networks (HotNets) 2007, Atlanta,
Georgia, November 2007.

[20] J. Ruderman. In Mozilla Documentation, August
2001. URL: http://www.mozilla.org/projects/
security/components/same-origin.html.

[21] W3C. Access control for cross-site requests. Technical
report, February 2008.
http://www.w3.org/TR/access-control/.

[22] H. J. Wang, X. Fan, J. Howell, and C. Jackson.
Protection and communication abstractions for web
browsers in mashupos. In SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating
systems principles, pages 1–16, New York, NY, USA,
2007. ACM.

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

929

