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Chapter 1

Linear Algebra Background

In which we review linear algebra prerequisites.

The following background from linear algebra will be sufficient for the sake of this course:
to know what is an eigenvalue and an eigenvector, to know that real symmetric matrices
have real eigenvalues and their real eigenvectors are orthogonal, and to know the variational
characterization of eigenvalues.

1.1 Basic Definitions

If x = a+ ib is a complex number, then we let x̄ = a− ib denote its conjugate. Note that a
complex number x is real if and only if x = x̄. If M ∈ Cm×n is a matrix, then M∗ denotes
the conjugate transpose of M , that is, (M∗)i,j = Mj,i. If the entries of M are real, then
M∗ = MT , where MT is the transpose of M , that is, the matrix such that (MT )i,j = Mj,i.

We say that a matrix M is Hermitian if M = M∗. In particular, real symmetric matrices
are Hermitian.

If x,y ∈ Cn are two vectors, then their inner product is defined as

〈v,w〉 := v∗w =
∑
i

vi · wi (1.1)

Notice that, by definition, we have 〈v,w〉 = (〈w,v〉)∗ and 〈v,v〉 = ||v||2. Note also that,
for two matrices A,B, we have (A ·B)∗ = B∗ ·A∗, and that for every matrix M and every
two vectors x, y, we have

〈Mx,y〉 = x∗M∗y = 〈x,M∗y〉
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If M ∈ Cn×n is a square matrix, λ ∈ C is a scalar, v ∈ Cn − {0} is a non-zero vector and
we have

Mv = λv (1.2)

then we say that λ is an eigenvalue of M and that v is eigenvector of M corresponding to
the eigenvalue λ.

1.2 The Spectral Theorem

We want to prove

Theorem 1.1 (Spectral Theorem) Let M ∈ Rn×n be a symmetric matrix with real-
valued entries, then there are n real numbers (not necessarily distinct) λ1, . . . , λn and n
orthonormal real vectors x1, . . . ,xn, xi ∈ Rn such that xi is an eigenvector of λi.

Assuming the fundamental theorem of algebra (that every polynomial has a complex root)
and basic properties of the determinant, the cleanest proof of the spectral theorem is to
proceed by induction on n, and to show that M must have a real eigenvalue λ1 with a real
eigenvector v1, and to show that M maps vectors orthogonal to v1 to vectors orthogonal to
v1. Then one applies the inductive hypothesis to M restricted to the (n − 1)-dimensional
space of vectors orthogonal to v1 and one recovers the remaining (n − 1) eigenvalues and
eigenvectors.

The cleanest way to formalize the above proof is to give all definitions and results in terms
of linear operators T : V → V where V is an arbitrary vector space over the reals. This
way, however, we would be giving several definitions that we would never use in the future,
so, instead, the inductive proof will use a somewhat inelegant change of basis to pass from
M to an (n− 1)× (n− 1) matrix M ′.

We begin by showing that a real symmetric matrix has real eigenvalues and eigenvectors.

Theorem 1.2 If M ∈ Rn×n is symmetric, then there is a real eigenvalue λ ∈ R and a real
eigenvector v ∈ Rn such that Mv = λv.

We begin by noting that every matrix has a complex eigenvalue.

Lemma 1.3 For every matrix M ∈ Cn×n, there is an eigenvalue λ ∈ C and an eigenvector
v ∈ Cn such that Mv = λv.

Proof: Note that λ is an eigenvalue for M if and only if

∃x 6= 0. (M − λI)x = 0
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which is true if and only if the rows of M − λI are not linearly independent, which is true
if and only if

det(M − λI) = 0

Now note that the mapping t → det(M − tI) is a univariate polynomial of degree n in t,
and so it must have a root λ by the fundamental theorem of algebra. �

Next we show that if M is real and symmetric, then its eigenvalues are real.

Lemma 1.4 If M is Hermitian, then, for every x and y,

〈Mx,y〉 = 〈x,My〉

Proof:

〈Mx,y〉 = 〈x,M∗y〉 = 〈x,My〉

�

Lemma 1.5 If M is Hermitian, then all the eigenvalues of M are real.

Proof: Let M be an Hermitian matrix and let λ be a scalar and x be a non-zero vector
such that Mx = λx. We will show that λ = λ∗, which implies that λ is a real number.

We note that

〈Mx,x〉 = 〈λx,x〉 = λ∗||x||2

and

〈x,Mx〉 = 〈x, λx〉 = λ||x||2

and by the fact that 〈Mx,x〉 = 〈x,Mx〉 , we have λ = λ∗. �

In order to prove Theorem 1.2, it remains to argue that, for a real eigenvalue of a real
symmetric matrix, we can find a real eigenvector.

Proof:[Of Theorem 1.2] Let M ∈ Rn×n be a real symmetric matrix, then M has a real
eigenvalue λ and a (possibly complex valued) eigenvector z = x + iy, where x and y are
real vectors. We have

Mx + iMy = λx + iλy

from which (recalling that the entries ofM and the scalar λ are real) it follows thatMx = λx
and that My = λy; since x and y cannot both be zero, it follows that λ has a real
eigenvector. �

We are now ready to prove the spectral theorem
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Proof:[Of Spectral Theorem] We proceed by induction on n. The case n = 1 is trivial.

Assume that the statement is true for dimension n − 1. Let λ1 be a real eigenvalue of M
and x1 be a real eigenvector λ1.

Now we claim that for every vector y that is orthogonal to x1, then My is also orthogonal
to x1. Indeed, the inner product of My and x1 is

〈x1,My〉 = 〈Mx1,y〉 = 〈λx1,y〉 = 0

Let V be the n− 1-dimensional subspace of Rn that contains all the vectors orthogonal to
x1. We want to apply the inductive hypothesis to M restricted to V ; we cannot literally do
that, because the theorem is not stated in terms of arbitrary linear operators over vector
spaces, so we will need to do that by fixing an appropriate basis for V .

let B ∈ Rn×(n−1) be a matrix that computes a bijective map from Rn−1 to V . (If
b1, . . . ,bn−1 is an orthonormal basis for V , then B is just the matrix whose columns are the
vectors bi.) Let also B′ ∈ R(n−1)×n be the matrix such that, for every y ∈ V , BB′y = y.
(We can set B′ = BT where B is as described above.) We apply the inductive hypothesis
to the matrix

M ′ := B′MB ∈ R(n−1)×(n−1)

and we find eigenvalues λ2, . . . , λn and orthonormal eigenvectors y2, . . . ,yn for M ′.

For every i = 2, . . . , n, we have

B′MByi = λiyi

and so
BB′MByi = λiByi

Since Byi is orthogonal to x1, it follows that MByi is also orthogonal to x1, and so
BB′MByi = MByi, so we have

MByi = λiByi

and, defining xi := Byi, we have
Mxi = λixi

Finally, we observe that the vectors xi are orthogonal. By construction, x1 is orthogonal
to x2, . . . ,xn, and, for every 2 ≤ i < j ≤ n, we have that

〈xi,xj〉 = 〈Byi, Byj〉 = 〈yi, BTByj〉 = 〈yi,yj〉 = 0

We have not verified that the vectors xi have norm 1 (which is true), but we can scale them
to have norm 1 if not. �
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1.3 Variational Characterization of Eigenvalues

We conclude these notes with the variational characterization of eigenvalues for real sym-
metric matrices.

Theorem 1.6 Let M ∈ Rn×n be a symmetric matrix, and λ1 ≤ λ2 ≤ · · ·λn be the eigen-
values of M in non-increasing order. Then

λk = min
k−dim V

max
x∈V−{0}

xTMx

xTx

The quantity xTMx
xTx

is called the Rayleigh quotient of x with respect to M , and we will
denote it by RM (x).

Proof: Let v1, . . . ,vn be orthonormal eigenvectors of the eigenvalues λ1, . . . , λn, as promised
by the spectral theorem. Consider the k-dimensional space spanned by v1, . . . ,vk. For every
vector x =

∑k
i=1 aivi in such a space, the numerator of the Rayleigh quotient is

∑
i,j

aiajv
T
i Mvj =

∑
i,j

aiajλjv
T
i vj =

k∑
i=1

λia
2
i ≤ λk ·

k∑
i=1

a2
i

The denominator is clearly
∑k

i=1 a
2
j , and so RM (x) ≤ λk. This shows that

λk ≥ min
k−dim V

max
x∈V−{0}

xTMx

xTx

For the other direction, let V be any k-dimensional space: we will show that V must contain
a vector of Rayleigh quotient ≥ λk. Let S be the span of vk, . . . ,vn; since S has dimension
n− k + 1 and V has dimension k, they must have some non-zero vector in common. Let x
be one such vector, and let us write x =

∑n
i=k aivi. The numerator of the Rayleigh quotient

of x is

n∑
i=k

λia
2
i ≥ λk

∑
i

a2
i

and the denominator is
∑

i a
2
i , so RM (x) ≥ λk. �

We have the following easy consequence.

Fact 1.7 If λ1 is the smallest eigenvalue of a real symmetric matrix M , then

λ1 = min
x 6=0

RM (x)

Furthermore, every minimizer is an eigenvector of λ1.
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Proof: The identity is the k = 1 case of the previous theorem. For the furthermore part,
let λ1 ≤ · · ·λn be the list of eigenvalues of M in non-decreasing order, and v1, . . . ,vn be
corresponding eigenvectors. If x =

∑
i aivi is any vector, then

RM (x) =

∑
i λia

2
i∑

i a
2
i

If RM (x) = λ1, then ai = 0 for every i such that λi > λ1, that is, x is a linear combination
of eigenvectors of λ1, and hence it is an eigenvector of λ1. �

Fact 1.8 If λn is the largest eigenvalue of a real symmetric matrix M , then

λn = max
x 6=0

RM (x)

Furthermore, every maximizer is an eigenvector of λn.

Proof: Apply Fact 1.7 to the matrix −M . �

Fact 1.9 If λ1 is the smallest eigenvalue of a real symmetric matrix M , and x1 is an
eigenvector of λ1, then

λ2 = min
x6=0, x⊥x1

RM (x)

Furthermore, every minimizer is an eigenvector of λ2.

Proof: A more conceptual proof would be to consider the restriction of M to the space
orthogonal to x1, and then apply Fact 1.7 to such a linear operator. But, since we have not
developed the theory for general linear operators, we would need to explicitly reduce to an
(n− 1)-dimensional case via a projection operator as in the proof of the spectral theorem.

Instead, we will give a more hands-on proof. Let λ1 ≤ λ2 ≤ · · ·λn be the list of eigenvalues
of M , with multiplicities, and v1, . . . ,vn be orthonormal vectors as given by the spectral
theorem. We may assume that v1 = x1, possibly by changing the orthonormal basis of the
eigenspace of λ1. For every vector x =

∑k
i=2 aivi orthogonal to v1, its Rayleigh quotient is

RM (x) =

∑n
i=2 λia

2
i∑

i a
2
i

≥ λ2

and the minimum is achieved by vectors x such that ai = 0 for every λi > λ2, that is, for
vectors x which are linear combinations of the eigenvectors of λ2, and so every minimizer
is an eigenvector of λ2. �
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Chapter 2

Introduction

In which we describe what this course is about.

2.1 Overview

This is class is about applications of linear algebra to graph theory and to graph algorithms.
In the finite-dimensional case, linear algebra deals with vectors and matrices, and with a
number of useful concepts and algorithms, such as determinants, eigenvalues, eigenvectors,
and solutions to systems of linear equations.

The application to graph theory and graph algorithms comes from associating, in a nat-
ural way, a matrix to a graph G = (V,E), and then interpreting the above concepts and
algorithms in graph-theoretic language. The most natural representation of a graph as a
matrix is via the |V | × |V | adjacency matrix of a graph, and certain related matrices, such
as the Laplacian and normalized Laplacian matrix will be our main focus. We can think
of |V |-dimensional Boolean vectors as a representing a partition of the vertices, that is, a
cut in the graph, and we can think of arbitrary vectors as fractional cuts. From this point
of view, eigenvalues are the optima of continuous relaxations of certain cut problems, the
corresponding eigenvectors are optimal solutions, and connections between spectrum and
cut structures are given by rounding algorithms converting fractional solutions into integral
ones. Flow problems are dual to cut problems, so one would expect linear algebraic tech-
niques to be helpful to find flows in networks: this is the case, via the theory of electrical
flows, which can be found as solutions to linear systems.

The course can be roughly subdivided into three parts: in the first part of the course we
will study spectral graph algorithms, that is, graph algorithms that make use of eigenvalues
and eigenvectors of the normalized Laplacian of the given graph. In the second part of the
course we will look at constructions of expander graphs, and their applications. In the third
part of the course, we will look at fast algorithms for solving systems of linear equations of
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the form Lx = b, where L is Laplacian of a graph, their applications to finding electrical
flows, and the applications of electrical flows to solving the max flow problem.

2.2 Spectral Graph Algorithms

We will study approximation algorithms for the sparsest cut problem, in which one wants
to find a cut (a partition into two sets) of the vertex set of a given graph so that a min-
imal number of edges cross the cut compared to the number of pairs of vertices that are
disconnected by the removal of such edges.

This problem is related to estimating the edge expansion of a graph and to find balanced
separators, that is, ways to disconnect a constant fraction of the pairs of vertices in a graph
after removing a minimal number of edges.

Finding balanced separators and sparse cuts arises in clustering problems, in which the
presence of an edge denotes a relation of similarity, and one wants to partition vertices into
few clusters so that, for the most part, vertices in the same cluster are similar and vertices
in different clusters are not. For example, sparse cut approximation algorithms are used
for image segmentation, by reducing the image segmentation problem to a graph clustering
problem in which the vertices are the pixels of the image and the (weights of the) edges
represent similarities between nearby pixels.

Balanced separators are also useful in the design of divide-and-conquer algorithms for graph
problems, in which one finds a small set of edges that disconnects the graph, recursively
solves the problem on the connected components, and then patches the partial solutions
and the edges of the cut, via either exact methods (usually dynamic programming) or
approximate heuristic. The sparsity of the cut determines the running time of the exact
algorithms and the quality of approximation of the heuristic ones.

We will study a spectral algorithm first proposed by Fiedler in the 1970s, and to put its
analysis into a broader context, we will also study the Leighton-Rao algorithm, which is
based on linear programming, and the Arora-Rao-Vazirani algorithm, which is based on
semidefinite programming. We will see how the three algorithms are based on conceptually
similar continuous relaxations.

Before giving the definition of sparsest cut, it is helpful to consider examples of graphs that
have very sparse cuts, in order to gain intuition.

Suppose that a communication network is shaped as a path, with the vertices representing
the communicating devices and the edges representing the available links. The clearly
undesirable feature of such a configuration is that the failure of a single edge can cause the
network to be disconnected, and, in particular, the failure of the middle edge will disconnect
half of the vertices from the other half.

This is a situation that can occur in reality. Most of Italian highway traffic is along the high-
way that connect Milan to Naples via Bologna, Florence and Rome. The section between
Bologna and Florence goes through relatively high mountain passes, and snow and ice can
cause road closures. When this happens, it is almost impossible to drive between Northern
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and Southern Italy. Closer to California, I was once driving from Banff, a mountain resort
town in Alberta which hosts a mathematical institute, back to the US. Suddenly, traffic on
Canada’s highway 1 came to a stop. People from the other cars, after a while, got out of
the cars and started hanging out and chatting on the side of the road. We asked if there
was any other way to go in case whatever accident was ahead of us would cause a long road
closure. They said no, this is the only highway here. Thankfully we started moving again
in half an hour or so.

Now, consider a two-dimensional
√
n×
√
n grid. The removal of an edge cannot disconnect

the graph, and the removal of a constant number of edges can only disconnected a constant
number of vertices from the rest of the graph, but it is possible to remove just

√
n edges, a

1/O(
√
n) fraction of the total, and have half of the vertices be disconnected from the other

half.

A k-dimensional hypercube with n = 2k is considerably better connected than a grid,
although it is still possible to remove a vanishingly small fraction of edges (the edges of
a dimension cut, which are a 1/k = 1/ log2 n fraction of the total number of edges) and
disconnect half of the vertices from the other half.

Clearly, the most reliable network layout is the clique; in a clique, if an adversary wants to
disconnect a p fraction of vertices from the rest of the graph, he has to remove at least a
p · (1− p) fraction of edges from the graph.

This property of the clique will be our “gold standard” for reliability. The expansion and
the sparsest cut parameters of a graph measure how worse a graph is compared with a
clique from this point of view.

For simplicity, here we will give definitions that apply only to the case of regular graphs.

Definition 2.1 (Edge expansion of a set) Let G = (V,E) be a d-regular graph, and
S ⊆ V a subset of vertices. The edge expansion of S is

φ(S) :=
E(S, V − S)

d|S|

where E(S, V −S) is the number of edges in E that have one endpoint in S and one endpoint
in V − S.

d|S| is a trivial upper bound to the number of edges that can leave S, and so φ(S) measures
how much smaller the actual number of edges is than this upper bound. We can also think
of φ(S) as the probability that, if we pick a random node v in S and then a random neighbor
w of v, the node w happens to be outside of S.

The quantity 1−φ(S) is the average fraction of neighbors that vertices in S have within S.
For example, if G represents a social network, and S is a subset of users of expansion .3,
this means that, on average, the users in S have 70% of their friends within S.

If (S, V − S) is a cut of the graph, and |S| ≤ |V − S|, then φ(S) is, within a factor of two,
the ratio between the fraction E(S, V − S)/|E| = 2E(S, V − S)/dn of edges that we have
to remove to disconnect S from V −S, and the fraction |S| · |V −S|/

(
n
2

)
of pairs of vertices

9



that become unreachable if we do so. We define the edge expansion of a cut as

φ(S, V − S) := max{φ(S), φ(V − S)}

The edge expansion of a graph is the minimum of the edge expansion of all cuts.

Definition 2.2 (Edge expansion of a graph) Let G = (V,E) be a d-regular graph, its
edge expansion is

φ(G) := min
S:0<|S|<|V |

φ(S, V − S) = min
S:0<|S|≤ |V |

2

φ(S)

If A is the adjacency matrix of a d-regular graph G = (V,E), then the normalized Laplacian
of G is the matrix L := I − 1

dA. We will prove the Cheeger inequalities: that if λ1 ≤ λ2 ≤
· · · ≤ λn are the eigenvalues of L, counted with multiplicities and sorted in nondecreasing
order, then

λ2

2
≤ φ(G) ≤

√
2λ2

The lower bound φ(G) ≥ λ2
2 follows by using the variational characterization of eigenvalues

to think of λ2 as the optimum of a continuous optimization problem, and then realizing
that, from this point of view, λ2 is actually the optimum of a relaxation of φ(G).

The upper bound φ(G) ≤
√

2λ2 has a constructive proof, showing that the set SF returned
by Fiedler’s algorithm has size ≤ |V |/2 and satisfies φ(SF ) ≤ 2

√
λ2. The two inequalities,

combined, show that φ(SF ) ≤ 2
√
φ(G) and provide a (tight) worst-case analysis of the

quality of the cut found by Fiedler-s algorithm, compared with the optimal cut.

To put this result in a broader context, we will see the Leighton-Rao approximation algo-
rithm, based on linear programming, which finds a cut of expansion ≤ φ(G) · O(log |V |),
and the Arora-Rao-Vazirani algorithm, based on semidefinite programming, which finds a
cut of expansion ≤ φ(G) ·O(

√
log |V |). The spectral, linear programming, and semidefinite

programming relaxation can all be seen as very related.

We will then consider combinatorial characterizations, and algorithms for other laplacian
eigenvalues.

We will prove a “higher order” Cheeger inequality that characterizes λk for k ≥ 2 similarly
to how the standard Cheeger inequality characterizes λ2, and the proof will provide a worst-
case analysis of spectral partitioning algorithms similarly to how the proof of the standard
Cheeger inequality provides a worst-case analysis of Fiedler’s algorithm.

The outcome of these results is that small Laplacian eigenvalues characterize the presence of
sparse cuts in the graph. Analogously, we will show that the value of λn characterizes large
cuts, and the proof a Cheeger-type inequality for λn will lead to the worst-case analysis of
a spectral algorithm for max cut.
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2.3 Constructions and Applications of Expander Graphs

A family of constant-degree expanders is a collection of arbitrarily large graphs, all of degree
O(1) and edge expansion Ω(1). Expanders are useful in several applications, and a common
theme in such applications is that even though they are sparse, they have some of the
“connectivity” properties of a complete graph.

For example, if one removes a o(1) fraction of edges from an expander, one is left with a
connected component that contains a 1− o(1) fraction of vertices.

Lemma 2.3 Let G = (V,E) be a regular graph of expansion φ. Then, after an ε < φ
fraction of the edges are adversarially removed, the graph has a connected component that
spans at least 1− ε/2φ fraction of the vertices.

Proof: Let d be the degree of G, and let E′ ⊆ E be an arbitrary subset of ≤ ε|E| =
ε · d · |V |/2 edges. Let C1, . . . , Cm be the connected components of the graph (V,E − E′),
ordered so that |C1| ≥ |C2| ≥ · · · ≥ |Cm|. We want to prove that |C1| ≥ |V | · (1 − 2ε/φ).
We have

|E′| ≥ 1

2

∑
i 6=j

E(Ci, Cj) =
1

2

∑
i

E(Ci, V − Ci)

If |C1| ≤ |V |/2, then we have

|E′| ≥ 1

2

∑
i

d · φ · |Ci| =
1

2
· d · φ · |V |

but this is impossible if φ > ε.

If |C1| ≥ |V |/2, then define S := C2 ∪ · · · ∪ Cm. We have

|E′| ≥ E(C1, S) ≥ d · φ · |S|

which implies that |S| ≤ ε
2φ · |V | and so C1 ≥

(
1− ε

2φ

)
· |V |. �

In a d-regular expander, the removal of k edges can cause at most O(k/d) vertices to
be disconnected from the remaining “giant component.” Clearly, it is always possible to
disconnect k/d vertices after removing k edges, so the reliability of an expander is essentially
best possible.

Another way in which expander graphs act similarly to a complete graph is the following.
Suppose that, given a graph G = (V,E), we generate a sequence v1, . . . , vk by choosing
v1 ∈ V uniformly at random and then performing a (k − 1)-step random walk. If G
is a complete graph (in which every vertex has a self-loop), this process uses k log |V |
random bits and generates k uniform and independent random vertices. In an expander
of constant degree, the process uses only log |V | + O(k) random bits, and the resulting
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sequence has several of the useful statistical properties of a sequence generated uniformly
at random. Especially in the case in which k is of the order of log |V |, using O(log |V |)
instead of O(log2 |V |) random bits can be a significant saving in certain application. (Note,
in particular, that the sample space has polynomial size instead of quasi-polynomial size.)

Constructions of constant-degree expanders are useful in a variety of applications, from the
design of data structures, to the derandomization of algorithms, from efficient cryptographic
constructions to being building blocks of more complex quasirandom objects.

There are two families of approaches to the explicit (efficient) construction of bounded-
degree expanders. One is via algebraic constructions, typically ones in which the expander
is constructed as a Cayley graph of a finite group. Usually these constructions are easy to
describe but rather difficult to analyze. The study of such expanders, and of the related
group properties, has become a very active research program. There are also combinatorial
constructions, which are somewhat more complicated to describe but considerably simpler
to analyze.

2.4 Mixing time of random walks

If one takes a random walk in a regular graph that is connected and not bipartite, then,
regardless of the starting vertex, the distribution of the t-th step of the walk is close to
the uniform distribution over the vertices, provided that t is large enough. It is always
sufficient for t to be quadratic in the number of vertices; in some graphs, however, the
distribution is near-uniform even when t is just poly-logarithmic, and, indeed, the time is

at most O
(

1
λ2

log |V |
)

, and thus it is at most logarithmic in expander graphs.

Among other applications, the study of the “mixing time” (the time that it takes to reach
the uniform distribution) of random walks has applications to analyzing the convergence
time of certain randomized algorithms.

The design of approximation algorithms for combinatorial counting problems, in which one
wants to count the number of solutions to a given NP-type problem, can be reduced to
the design of approximately uniform sampling in which one wants to approximately sample
from the set of such solutions. For example, the task of approximately counting the number
of perfect matchings can be reduced to the task of sampling almost uniformly from the set
of perfect matchings of a given graph. One can design approximate sampling algorithms by
starting from an arbitrary solution and then making a series of random local changes. The
behavior of the algorithm then corresponds to performing a random walk in the graph that
has a vertex for every possible solution and an edge for each local change that the algorithm
can choose to make. Although the graph can have an exponential number of vertices in
the size of the problem that we want to solve, it is possible for the approximate sampling
algorithm to run in polynomial time, provided that a random walk in the graph converges
to uniform in time poly-logarithmic in its size.

The study of the mixing time of random walks in graphs is thus a main analysis tool
to bound the running time of approximate sampling algorithms (and, via reductions, of
approximate counting algorithms).

12



As a way of showing applications of results proved so far, we will show that, because of

Cheeger’s inequality, the mixing time is upper-bounded by O
(

1
φ2

log |V |
)

, and then we will

use the dual of the Leighton-Rao relaxation to show that 1/φ can be upper-bounded by
the congestion of a certain flow problem. We will apply this theory to the analysis of an
algorithm that approximates the number of perfect matchings in a given dense bipartite
graph.

2.5 Linear Systems, Electrical Flows, and Applications

In the last part of the course, we will turn to connections between graph theory and a
different aspect of linear algebra, namely the solution of systems of linear equations. If we
have a system of linear equations of the form

Ax = b

we can solve it (or determine that it has no solution) in polynomial time using Gaussian
elimination. Sometimes, it is possible to develop faster and more numerically stable algo-
rithms by thinking of the problem has an optimization, such as, for example,

min
x
||Ax− b||

for an appropriate choice of norm.

If A is positive definite (that is, all the eigenvalues are strictly positive), then another way
of turning a linear system into an optimization problem is to consider the problem

min
1

2
xTAx− bTx (2.1)

The problem is strictly convex, because the Hessian of the function f(x) := 1
2xTAx−bTx,

that is, the matrix of partial second derivatives of f(·), is, at every point, the matrix A
itself, which we assumed to be positive definite.

The strongly convex optimization problem (2.1) has a unique minimum, achieved at a point
x∗. The gradient of f(·) at a point x, that is, the vector of partial derivates at x, is
∇f(x) = Ax− b. The gradient has to be equal to the 0 vector at the optimum x∗, and so
we have Ax∗ = b.

If we want to solve the linear system Ax = b, and A is positive definite, then a possible
strategy is to solve the convex optimization problem (2.1) using gradient descent, or similar
local-search algorithms for convex optimization. The running time of such algorithms will
be determined by the smallest eigenvalue A. In order to deal with matrix having small
eigenvalues, one resorts to preconditioning, which is a technique that reduces the Ax = b
system to a By = b′ system in which B has a larger smallest eigenvalue. In the interesting
special case in which A is the Laplacian matrix of an undirected graph, the running time
is determined by the expansion of the graph, and preconditioning can be understood in
graph-theoretic terms.
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(Technically, the Laplacian is not positive definite. What we mean above is that we are
interested in solving an equation of the form Lx = b where L is a Laplacian matrix, and x
is further constrained to be orthogonal to the eigenspace of zero.)

Efficiently solving “Laplacian systems” of the form Lx = b is closely related to the problem
of finding sparsifiers of graphs, and we will see nearly linear time algorithms for both
problems.

One application of finding solutions to systems of the form Lx = b is to find electrical flows
in networks. We will then see how to use fast algorithms for finding electrical flows and
turn them into algorithm for the Max Flow problem.
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Chapter 3

The Basics of Spectral Graph Theory

In which we introduce the Laplacian matrix and we prove our first results in spectral graph
theory.

3.1 The Laplacian Matrix

Given an undirected graph G = (V,E), the approach of spectral graph theory is to asso-
ciate a symmetric real-valued matrix to G, and to related the eigenvalues of the matrix to
combinatorial properties of G.

For the sake of this lecture, we will restrict ourselves to the case in which G is a d-regular
graph, and we will then see how to extend our results to apply to irregular graphs as well.

The most natural matrix to associate to G is the adjacency matrix A such that Ai,j = 1 if
{i, j} ∈ E and Ai,j = 0 otherwise. In the second part of the course, in which we will study
expander graphs, the adjacency matrix will indeed be the most convenient matrix to work
with. For the sake of the algorithms that we will analyze in the first part of the course,
however, a slight variation called the normalized Laplacian is more convenient.

There are a few ways to motivate the definition of the Laplacian. One way is the following:
the variational characterization of the eigenvalues of real symmetric matrices tells us that
we can think of the eigenvalues of M as optima of min-max optimization problems in which
vectors x ∈ RV are feasible solutions and the cost function is the Rayleigh quotient

RM (x) =
xTMx

xTx

We know that every homogeneous polynomial of degree 2 can be realized as xTMx for some
matrix M , and,if we want to study cuts in a graph G = (V,E), it makes sense to choose a
matrix M such that

xTMx =
∑
{u,v}∈E

(xu − xv)2

15



because, if x ∈ {0, 1}V is a Boolean vector, representing a cut in the graph, then the
right-hand-side expression above is counting the number of edges that cross the cut, and so
optimization problems with the above cost functions will be relaxations of cut problems.

Some calculations show that the matrix having such a property is dI − A, which is called
the Laplacian matrix of G. Indeed, we can verify that

xT (dI −A)x =
∑
{u,v}∈E

(xu − xv)2

because both expressions are easily seen to be equal to∑
v

dx2
v − 2

∑
{u,v}∈E

xuxv

As we will see in a moment, the eigenvalues of dI − A are in the range [0, 2d], and it is
not hard to see that their sum is dn, so it is convenient to divide the Laplacian matrix by
d so that the range and the average values of the eigenvalues of the resulting matrix are
independent of the degree. (This degree independence will make it possible to generalize
results to the irregular case.)

We have thus reached the following definition.

Definition 3.1 (Normalized Laplacian) The normalized Laplacian matrix of an undi-
rected d-regular graph G = (V,E) is L := I − 1

dA.

3.2 Some Facts About Laplacian Eigenvalues

We shall now prove the following relations between the eigenvalues of L and certain purely
combinatorial properties of G.

Theorem 3.2 Let G be a d-regular undirected graph, let A be the adjacency matrix of G,
and L = I − 1

d ·A be the normalized Laplacian matrix of G. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the
real eigenvalues of L with multiplicities, in nondecreasing order. Then

1. λ1 = 0 and λn ≤ 2.

2. λk = 0 if and only if G has at least k connected components.

3. λn = 2 if and only if at least one of the connected components of G is bipartite.

Note that the first two properties imply that the multiplicity of 0 as an eigenvalue is precisely
the number of connected components of G.

Proof: By the characterization of the Rayleigh quotient of L that we established above,
and from the variational characterization of eigenvalues, we have

λ1 = min
x∈Rn−{0}

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v
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and so λ1 ≥ 0 because the Rayleigh quotient, being a ratio of sums of squares, is always
non-negative.

If we take 1 = (1, . . . , 1) to be the all-one vector, we see that its Rayleigh quotient is 0, and
so 0 is the smallest eigenvalue of L, with 1 being one of the vectors in the eigenspace of 1.

We also have the following formula for λk:

λk = min
S k−dimensional subspace of Rn

max
x∈S−{0}

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

So, if λk = 0, there must exist a k-dimensional space S such that for every x ∈ S and every
{u, v} ∈ E, we have xu = xv, and so xu = xv for every u, v which are in the same connected
component. This means that each x ∈ S must be constant within each connected component
of G, and so the dimension of S can be at most the number of connected components of G,
meaning that G has at least k connected components.

Conversely, if G has at least k connected components, we can let S be the space of vectors
that are constant within each component, and S is a space of dimension at least k such that
for every element x of S we have ∑

{u,v}∈E

(xu − xv)2 = 0

meaning that S is a witness of the fact that λk = 0.

Finally, to study λn, we first note that we have the formula

λn = max
x∈Rn−{0}

xTLx

xTx

from the variational characterization of eigenvalues (see Handout 0).

We also observe that for every vector x ∈ Rn we have

2xTx− xTLx =
1

d

∑
{u,v}∈E

(xu + xv)
2

and so

λn = 2− min
x∈Rn−{0}

∑
{u,v}∈E(xu + xv)

2

d
∑

v x
2
v

from which it follows that

λn ≤ 2

and if λn = 2 then there must be a non-zero vector x such that∑
{u,v}∈E

(xu + xv)
2 = 0
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which means that xu = −xv for every edge (u, v) ∈ E.

Let us now define A := {v : xv > 0} and B := {v : xv < 0}. The set A ∪ B is non-empty
(otherwise we would have x = 0) and is either the entire graph, or else it is disconnected
from the rest of the graph, because otherwise an edge with an endpoint in A ∪ B and
an endpoint in V − (A ∪ B) would give a positive contribution to

∑
{u,v}∈E(xu − xv)

2;
furthermore, every edge incident on a vertex on A must have the other endpoint in B, and
vice versa. Thus, A∪B is a connected component, or a collection of connected components,
of G which is bipartite, with the bipartition A,B. �
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Chapter 4

Cheeger’s Inequalities

In which we generalize the notion of normalized Laplacian to irregular graphs, we extend
the basic spectral graph theory results from last lecture to irregular graphs, and we prove the
easy direction of Cheeger’s inequalities.

4.1 Irregular Graphs

Let G = (V,E) be an undirected graph, not necessarily regular. We will assume that
every vertex has non-zero degree. We would like to define a normalized Laplacian matrix
associated to G so that the properties we proved last time are true: that the multiplicity of
0 as an eigenvalue is equal to the number of connected components of G, that the largest
eigenvalue is at most 2, and that it is 2 if and only if (a connected component of) the graph
is bipartite.

In order to have a matrix such that zero is the smallest eigenvalue, and such that multiplicity
of zero is the number of connected component, we want a matrix such that the numerator
of the Rayleigh quotient is (a multiple of)

∑
{u,v}∈E

(xu − xv)2

and the matrix M such that xTMx is the above expression is the matrix M = D−A, where
D is the diagonal matrix such that Dv,v = dv, the degree of v. The matrix D −A is called
the Laplacian matrix of G. Note that there is no fixed constant upper bound to the largest
eigenvalue of D−A; for example, if G is a d-regular bipartite graph, the largest eigenvalue
is 2d, as proved in the last lecture.

Some calculations shows that the right analog of the normalization that we did in the regular
case (in which we divided by the degree d) would be to have a matrix whose Rayleigh

19



quotient is

∑
{u,v}∈E(xu − xv)2∑

v dvx
2
v

= 2−
∑
{u,v}∈E(xu + xv)

2∑
v dvx

2
v

(4.1)

and it’s clear that the above expression is at most 2 for every x, and it is possible to find an
x for which the above expression is 2 if and only if G has a bipartite connected component.

Unfortunately, there is no matrix whose Rayleigh quotient equals (4.1), because the denom-
inator of a Rayleigh quotient is, by definition,

∑
v x

2
v regardless of the matrix.

One way to work around this problem would be to give a more general form of the variational
characterization of eigenvalues, in which we have an arbitrary inner product 〈·, ·〉, and the

Rayleigh quotient is defined as 〈x,Mx〉
〈x,x〉 .

Here we will proceed in a way that is essentially equivalent, but without introducing this
additional definitional framework.

The point is that, if we look at the Rayleigh quotient of the vector D1/2x, where D1/2 is

the diagonal matrix such that D
1/2
v,v =

√
dv, then the denominator will indeed be xTDx =∑

v dvx
2
v, and that we can find a matrix L such that the numerator of the Rayleigh quotient

of D1/2x is xTD1/2LD1/2x =
∑
{u,v}∈E(xu−xv)2, so that the Rayleigh quotient RL(D1/2x)

is indeed the expression in (4.1).

This matrix L is called the normalized Laplacian of G and, by the above observation, it has
to be L = D−1/2(D − A)D−1/2 = I −D−1/2AD−1/2. Note that, in a d-regular graph, we
get L = I − 1

dA, consistent with our definition from the last lecture.

Now the point is that the mapping x→ D1/2x is linear and bijective, so it maps the set of
all possible vectors to the set of all possible vectors, and it maps a k-dimensional space to
a (possibly different) k-dimensional space.

If we let λ1 ≤ · · · ≤ λn be the eigenvalues of L = I −D−1/2AD−1/2, counting repetitions,
the variational characterization gives us

λ1 = min
x 6=0

RL(x) = min
x 6=0

RL(D1/2x) = min
x 6=0

∑
{u,v}∈E(xu − xv)2∑

v dvx
2
v

and
λk = min

X k−dimensional
max

x∈X−{0}
RL(x)

= min
X k−dimensional

max
x∈X−{0}

RL(D1/2x)

= min
X k−dimensional

max
x∈X−{0}

∑
{u,v}∈E(xu − xv)2∑

v dvx
2
v

from which we have that λ1 = 0 and that the multiplicity of zero is equal to the number of
connected components.

We also have
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λn = max
x 6=0

RL(x) = max
x6=0

RL(D1/2x)

= 2−min
x 6=0

∑
{u,v}∈E(xu + xv)

2∑
v dvx

2
v

from which we see that λn ≤ 2 and that λn = 2 if and only if one of the connected
components of G is bipartite.

4.2 Edge Expansion, Fiedler’s Algorithm and Cheeger’s In-
equalities

We will now return, for simplicity, to the regular case.

If G = (V,E) is an undirected d-regular graph, and S ⊆ V is a set of vertices, we call the
quantity

φ(S) :=
E(S, V − S)

d|S|
the edge expansion of S. The quantity φ(S) is the average fraction of neighbors outside of
S for a random element of S, and it compares the actual number of edges crossing the cut
(S, V − S) with the trivial upper bound d|S|.
We define the expansion of a cut (S, V − S) as

φ(S, V − S) := max {φ(S), φ(V − S)} =
E(S, V − S)

d ·min{|S|, |V − S|}

The edge expansion of the graph G is defined as

φ(G) := min
S
φ(S, V − S) = min

S:1≤|S|≤ |V |
2

φ(S)

(Note: it is common in the literature to use the notation φ(S) to refer to the quantity that
we call φ(S, V − S).)

Finding cuts of small expansion is a problem with several applications. It is an open question
if there is a polynomial-time approximation with a constant-factor approximation ratio; a
positive answer would refute the “small-set expansion conjecture” which is closely related
to the unique games conjecture.

The following algorithm was proposed by Fiedler, and it works well in practice when x is
the eigenvector of λ2.

• Input: graph G = (V,E), vector x ∈ RV

– Sort the vertices according the values xv, and let v1, . . . , vn be the sorted order

– Find a k that minimizes φ({v1, . . . , vk}, {vk+1, . . . , vn}), and output such a cut
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Note that Fiedler’s algorithm can be implemented in time O(|E| + |V | log |V |), because
it takes time O(|V | log |V |) to sort the vertices, and the cut of minimal expansion that
respects the sorted order can be found in time O(E). (To see that this is the case,
consider that, in order to find such a cut, we just need to compute the numbers ek :=
E({v1, . . . , vk}, {vk+1, . . . , vn}) for each k = 1, . . . , n − 1. We see that e1 is equal to the
degree of v1, and that, given ek−1, the value of ek can be computed by just adding to ek−1

the number of neighbors of vk in {vk+1, . . . , vn}, and subtracting the number of neighbors
of vk in {v1, . . . , vk}, on operation that can be done in time O(dvk). Thus the total running
time is of the order of

∑
v dv, that is, O(|E|).)

We will prove the following result

Theorem 4.1 (Cheeger’s Inequalities) Let G be an undirected regular graph and λ1 ≤
λ2 ≤ · · · ≤ λn be the eigenvalues of the normalized Laplacian, with repetitions, then

λ2

2
≤ φ(G) ≤

√
2λ2

Furthermore, if (S, V − S) is the cut found by Fiedler’s algorithm given the eigenvector of
λ2, then

φ(S, V − S) ≤
√

2λ2

Note that, from the furthermore part of the Theorem, it follows that, if (S, V − S) is the
cut found by Fiedler’s algorithm given an eigenvector of λ2, we have

φ(S, V − S) ≤ 2
√
φ(G)

which is a worst-case guarantee of the quality of the solution found by the algorithm.

4.3 Proof that λ2
2 ≤ φ(G)

Let S be a set of vertices such that φ(S, V − S) = φ(G). Recall that for every set S, we
have that expansion of S is the same as the Rayleigh quotient of the indicator vector 1S .
(The indicator vector of a set S is the 0/1 vector 1S whose v-th coordinate is 1 if and only
if v ∈ S.) So we have

RL(1S) ≤ φ(G)

RL(1V−S) ≤ φ(G)

also recall that, from the variational characterization of eigenvalues, we have

λ2 = min
X 2−dimensional

max
x∈X−{0}

RL(x)

We will prove the inequality λ2 ≤ 2φ(G) by showing that all the vectors in the 2-dimensional
space X of linear combinations of the orthogonal vectors 1S ,1V−S have Rayleigh quotient
at most 2φ(G). This is a consequence of the following useful fact.
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Lemma 4.2 Let x and y be two orthogonal vectors, and let M be a positive semidefinite
matrix. Then

RM (x + y) ≤ 2 ·max{RM (x), RM (y)}

Proof: Let 0 ≤ λ1 ≤ · · ·λn be the eigenvalues of M and v1, . . . ,vn be a corresponding
basis of eigenvectors. Let us write x =

∑
i aivi and y =

∑
i bivi.

The Rayleigh quotient of x + y is

∑
i λi(ai + bi)

2

||x + y||2
≤
∑

i λi2(a2
i + b2i )

||x||2 + ||y||2

=
2RM (x) · ||x||2 + 2RM (y) · ||y||2

||x||2 + ||y||2
≤ 2 max{RM (x), RM (y)}

In the first inequality, we used orthogonality of x and y to derive ||x + y||2 = ||x||2 + ||y||2
and we used the Cauchy-Schwarz inequality (a+ b)2 ≤ 2a2 + 2b2. �

4.4 First Part of the Analysis of Fiedler’s Algorithm

The vector 1 = (1, . . . , 1) is an eigenvector for 0, which is the smallest eigenvalue of the
normalized Laplacian of G, and so, from the variational characterization of eigenvalues, we
have that

λ2 = min
x⊥1

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

and that any eigenvector x of λ2 is a minimizer of the above expression. We will prove
that φ(G) ≤

√
2λ2 and that the Furthermore part of Theorem 4.1 is true by showing the

following stronger result:

Lemma 4.3 Let x be a vector orthogonal to 1 and let (S, V − S) be the cut found by
Fiedler’s algorithm given x. Then

φ(S, V − S) ≤
√

2RL(x)

This stronger form is useful, because often one runs Fiedler’s algorithm on an approximate
eigenvector, and Lemma 4.3 shows that one gets a guarantee on the quality of the resulting
cut that does not require x to be an eigenvector, as long as its Rayleigh quotient is small.

We divide the proof of Lemma 4.3 into two parts: we analyze the performance of the
algorithm given a vector x that, instead of being orthogonal to 1, has the property of
having non-negative entries and at most |V |/2 non-zero entries, and we show that analyzing
the performance of the algorithm on vectors of the former type reduces to analyzing the
performance on vectors of the latter type.
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Lemma 4.4 Let y ∈ RV≥0 be a vector with non-negative entries. Then there is a 0 < t ≤
maxv{yv} such that

φ({v : yv ≥ t}) ≤
√

2RL(y)

Lemma 4.5 Let x ∈ RV be orthogonal to 1. Then there is a vector y ∈ RV≥0 with at most
|V |/2 non-zero entries such that

RL(y) ≤ RL(x)

Furthermore, for every 0 < t ≤ maxv{yv}, the cut ({v : yv ≥ t}, {v : yv < t}) is one of the
cuts considered by Fiedler’s algorithm on input x.

Let us quickly see how to prove Lemma 4.3 given Lemma 5.1 and Lemma 4.5. Let x be
a vector orthogonal to 1, and let (SF , V − SF ) be the cut found by Fiedler’s algorithm
given x. Let y be the non-negative vector with at most |V |/2 positive entries and such that
RL(y) ≤ RL(x) as promised by Lemma 4.5. Let 0 < t ≤ maxv{yv} be a threshold such that

φ({v : yv ≥ t}) ≤
√

2RL(y) ≤
√

2RL(x)

as promised by Lemma 4.5. The set St := φ({v : yv ≥ t}) contains at most |V |/2 vertices,
and the cut (St, V −St) is one of the cuts considered by Fiedler’s algorithm on input x, and
so

φ(SF , V − SF ) ≤ φ(St, V − St) = φ(St) ≤
√

2RL(x)

We will prove Lemma 5.1 next time. We conclude this lecture with a proof of Lemma 4.5.

Proof: (Of Lemma 4.5) First we observe that, for every constant c,

RL(x + c1) ≤ RL(x)

because the numerator of RL(x + c1) and the numerator of RL(x) are the same, and the
denominator of RL(x + c1) is ||x + c1||2 = ||x||2 + ||c1||2 ≥ ||x2||.
Let m be the median value of the entries of x, and call x′ := x − m1. Then we have
RL(x′) ≤ RL(x), and the median of the entries of x′ is zero, meaning that x′ has at most
|V |/2 positive entries and at most |V |/2 negative entries. We will refer to the vertices v
such that x′v > 0 as the positive vertices, and the vertices v such that x′v < 0 as the negative
vertices.

We write
x′ = x+ − x−

where x+
v = x′v if v is positive and x+

v = 0 otherwise; similarly, x−v = −x′v if v is negative,
and x−v = 0 otherwise. Note that x+ and x− are orthogonal, non-negative, and each of
them has at most |V |/2 nonzero entries. Note also that, for every t, the cut defined by the
set {v : x+

v ≥ t} is one of the cuts considered by Fiedler’s algorithm on input x, because it
is the cut

({v : xv < t+m}, {v : xv ≥ t+m})
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Similarly, for every t, the cut defined by the set {v : x−v ≥ t} is one of the cuts considered
by Fiedler’s algorithm on input x, because it is the cut

({v : xv ≤ m− t}, {v : xv > m− t})

It remains to show that at least one of x+ or x− has Rayleigh quotient smaller than or
equal to the Rayleigh quotient of x′ (and, hence, of x). We claim that

RL(x′) =

∑
{u,v}(xu − xv)2

||x′||2
=

∑
{u,v}((x

+
u − x+

v )− (x−u − x−v ))2

||x+||2 + ||x−||2

≥
∑
{u,v}(x

+
u − x+

v )2 + (x−u − x−v )2

||x+||2 + ||x−||2

=
RL(x+) · ||x+||2 +RL(x−) · ||x−||2

||x+||2 + ||x−||2
≥ min{RL(x+), RL(x−)}

The only step that we need to justify is that for every edge {u, v} we have

((x+
u − x+

v )− (x−u − x−v ))2 ≥ (x+
u − x+

v )2 + (x−u − x−v )2

If {u, v} is an edge between two non-positive vertices, or between two non-negative vertices,
then the left-hand side and the right-hand side are clearly equal. If it is an edge between
a positive vertex u and a negative vertex v, then the left-hand side is equal to (x+

u + x−v )2,
and the right-hand side is equal to (x+

u )2 + (x−v )2. �
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Chapter 5

Cheeger’s Inequalities cont’d

In which we finish the proof of Cheeger’s inequalities.

It remains to prove the following statement.

Lemma 5.1 Let y ∈ RV≥0 be a vector with non-negative entries. Then there is a 0 < t ≤
maxv{yv} such that

φ({v : yv ≥ t}) ≤
√

2RL(y)

We will provide a probabilistic proof. Without loss of generality (multiplication by a scalar
does not affect the Rayleigh quotient of a vector) we may assume that maxv yv = 1. We
consider the probabilistic process in which we pick t > 0 in such a way that t2 is uniformly
distributed in [0, 1] and then define the non-empty set St := {v : yv ≥ t}.
We claim that

EE(St, V − St)
E d|St|

≤
√

2RL(y) (5.1)

Notice that Lemma 5.1 follows from such a claim, because of the following useful fact.

Fact 5.2 Let X and Y be random variables such that P[Y > 0] = 1. Then

P
[
X

Y
≤ EX

EY

]
> 0

Proof: Call r := EX
EY . Then, using linearity of expectation, we have EX − rY = 0, from

which it follows P[X − rY ≤ 0] > 0, but, whenever Y > 0, which we assumed to happen
with probability 1, the conditions X − rY ≤ 0 and X

Y ≤ r are equivalent. �
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It remains to prove (5.1).

To bound the denominator, we see that

E d|St| = d ·
∑
v∈V

P[v ∈ St] = d
∑
v

y2
v

because

P[v ∈ St] = P[yv ≥ t] = P[y2
v ≥ t2] = y2

v

To bound the numerator, we say that an edge is cut by St if one endpoint is in St and
another is not. We have

EE(St, V − St) =
∑
{u,v}∈E

P[{u, v} is cut]

=
∑
{u,v}∈E

|y2
v − y2

u| =
∑
{u,v}∈E

|yv − yu| · (yu + yv)

Applying Cauchy-Schwarz, we have

EE(St, V − St) ≤
√ ∑
{u,v}∈E

(yv − yu)2 ·
√ ∑
{u,v}∈E

(yv + yu)2

and applying Cauchy-Schwarz again (in the form (a+ b)2 ≤ 2a2 + 2b2) we get∑
{u,v}∈E

(yv + yu)2 ≤
∑
{u,v}∈E

2yv + 2y2
u = 2d

∑
v

y2
v

Putting everything together gives

EE(St, V − St)
E d|St|

≤

√
2

∑
{u,v}∈E(yv − yu)2

d
∑

v y
2
v

which is (5.1).
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Chapter 6

Cheeger-type Inequalities for λn

In which we prove an analog of Cheeger’s inequalities for the largest Laplacian eigenvalue
and we show how to use it to develop a spectral approximation algorithm for Max Cut.

6.1 Cheeger-type Inequalities for λn

Let G = (V,E) be an undirected graph (not necessarily regular), D its diagonal matrix of
degrees, A its adjacency matrix, L = I − D−1/2AD−1/2 its normalized Laplacian matrix,
and 0 = λ1 ≤ · · · ≤ λn ≤ 2 be the eigenvalues of L, counted with multiplicities and listed
in non-decreasing order.

In Handout 2, we proved that λk = 0 if and only if G has at least k connected component
and λn = 2 if and only if there is a connected component of G (possibly, all of G) that is
bipartite.

A special case of the former fact is that λ2 = 0 if and only if the graph is disconnected,
and the Cheeger inequalities give a “robust” version of this fact, showing that λ2 can be
small if and only if the expansion of the graph is small. In these notes we will see a robust
version of the latter fact; we will identify a combinatorial parameter that is zero if and only
if the graph has a bipartite connected component, and it is small if and only if the graph is
“close” (in an appropriate sense) to having a bipartite connected components, and we will
show that this parameter is small if and only if 2− λn is small.

Recall that

2− λn = min
x∈Rn−{0}

∑
{u,v}∈E(xu + xv)

2∑
v∈V dvx

2
v

We will study the following combinatorial problem, which formalizes the task of finding an
“almost bipartite connected component:” we are looking for a non-empty subset of vertices
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S ⊆ V (we allow S = V ) and a bipartition (A,B) of S such that there is a small number
of “violating edges” compared to the number of edges incident on S, where an edge {u, v}
is violating if it is in the cut (S, V − S), if it has both endpoints in A, or if it has both
endpoints in B. (Note that if there are no violating edges, then S is a bipartite connected
component of G.)

It will be convenient to package the information about A,B, S as a vector y ∈ {−1, 0, 1}n,
where the non-zero coordinates correspond to S, and the partition of S is given by the
positive versus negative coordinates. We define the “bipartiteness ratio” of y as

β(y) :=

∑
{u,v}∈E |yu + yv|∑

v∈V dv|yv|

Note that in the numerator we have the number of violating edges, with edges contained in
A or in B counted with a weight of 2, and edges from S to V − S counted with a weight of
1. In the denominator we have the sum of the degrees of the vertices of S (also called the
volume of S, and written vol(S)) which is, up to a factor of 2, the number of edges incident
on S.

(Other definitions would have been reasonable, for example in the numerator we could
just count the number of violating edges without weights, or we could have the expression∑
{u,v}∈E(yu + yv)

2. Those choices would give similar bounds to the ones we will prove,
with different multiplicative constants.)

We define the bipartiteness ratio of G as

β(G) = min
y∈{−1,0,1}n−{0}

β(y)

We will prove the following analog of Cheeger’s inequalities:

2− λn
2

≤ β(G) ≤
√

2 · (2− λn)

The first inequality is the easy direction

2− λn = min
x∈Rn−{0}

∑
{u,v}∈E(xu + xv)

2∑
v∈V dvx

2
v

≤ min
y∈{−1,0,1}n−{0}

∑
{u,v}∈E |yu + yv|2∑

v∈V dv|yv|2

≤ min
y∈{−1,0,1}n−{0}

∑
{u,v}∈E 2 · |yu + yv|∑

v∈V dv|yv|

The other direction follows by applying the following lemma to the case in which x is the
eigenvector of λn.
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Lemma 6.1 (Main) For every x ∈ Rn − {0} there is a threshold t, 0 < t ≤ maxv |xv|,
such that, if we define y(t) ∈ {−1, 0, 1}n as

y(t)
v =


−1 if xv ≤ −t
0 if − t < xv < t
1 if xv ≥ t

we have

β(y(t)) ≤

√
2 ·
∑
{u,v}∈E(xu + xv)2∑

v∈V dvx
2
v

Note that the Lemma is giving the analysis of an algorithm that is the “bipartite analog”
of Fiedler’s algorithm. We sort vertices according to |xv|, and then we consider all sets S
which are suffixes of the sorted order and cut S into (A,B) according to sign. We pick the
solution, among those, with smallest bipartiteness ratio. Given x, such a solution can be
found in time O(|E|+ |V | log |V |) as in the case of Fiedler’s algorithm.

6.1.1 Proof of Main Lemma

We will assume without loss of generality that maxv |xv| = 1. (Scaling x by a multiplicative
constant does not change the Rayleigh quotient and does not change the set of y that can
be obtained from x over the possible choices of thresholds.)

Consider the following probabilistic experiment: we pick t at random in [0, 1] such that t2

is uniformly distributed in [0, 1], and we define the vector y(t) as in the statement of the
lemma. We claim that

E
∑
{u,v}∈E |y

(t)
u + y

(t)
v |

E
∑

v∈V dv|y
(t)
v |

≤

√
2 ·
∑
{u,v}∈E(xu + xv)2∑

v∈V dvx
2
v

(6.1)

and we note that the Main Lemma follows from the above claim and from the fact, which
we have used before, that if X and Y are random variables such that P[Y > 0] = 1, then
there is a positive probability that X

Y ≤ EX
EY .

We immediately see that

E
∑
v∈V

dv|y(t)
v | =

∑
v

dv P[ |xv| ≥ t ] =
∑
v

dvx
2
v

To analyze the numerator, we distinguish two cases

1. If xu and xv have the same sign, and, let’s say, x2
u ≤ x2

v then there is a probability x2
u

that both y
(t)
u and y

(t)
v are non-zero (and have the same sign), meaning that |y(t)

u +

y
(t)
v | = 2; and there is an additional probability x2

v − x2
u that y

(t)
u = 0 and y

(t)
v = ±1,

so that |y(t)
u + y

(t)
v | = 1. Overall we have

E |y(t)
u + y(t)

v | = 2x2
u + x2

v − x2
u = x2

u + x2
v
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since the last expression is symmetric with respect to u and v, the equation

E |y(t)
u + y(t)

v | = x2
u + x2

v

holds also if x2
u ≥ x2

v;

2. If xu and xv have opposite signs, and, let’s say, x2
u ≤ x2

v, there is probability x2
v − x2

u

that y
(t)
u = 0 and y

(t)
v = ±1, in which case |y(t)

u + y
(t)
v | = 1, and otherwise we have

|y(t)
u + y

(t)
v | = 0. If x2

u ≥ x2
v, then |y(t)

u + y
(t)
v | equals 1 with probability x2

u − x2
v and it

equals zero otherwise. In either case, we have

E |y(t)
u + y(t)

v | = |x2
u − x2

v|

In both cases, the inequality

E |y(t)
u + y(t)

v | ≤ |xu + xv| · (|xu|+ |xv|)

is satisfied.

Applying Cauchy-Schwarz as in the proof of Cheeger’s inequalities we have

E
∑
{u,v}∈E

|y(t)
u + y(t)

v | ≤
∑
{u,v}∈E

|xu + xv| · (|xu|+ |xv|)

≤
√ ∑
{u,v}∈E

(xu + xv)2 ·
√ ∑
{u,v}∈E

(|xu|+ |xv|)2

and ∑
{u,v}∈E

(|xu|+ |xv|)2 ≤
∑
{u,v}∈E

2x2
u + x2

v = 2
∑
v

dvx
2
v

and, combining all the bounds, we get (6.1).

6.2 Application to Max Cut

In the Max Cut problem, given an undirected graph G = (V,E) we want to find a cut
(C, V − C) maximizing the number of cut edges E(C, V − C). We call maxcut(G) the
fraction of edges of G cut by the optimal solution. We see that if maxcut(G) = 1− ε, then
2− λn ≤ 2ε, as seen by taking the boolean vector x ∈ {−1, 1}n such that xv = 1 iff v ∈ C.

This means that, in polynomial time, we can find a y ∈ {−1, 0, 1} such that β(y) ≤ 2
√
ε.

Unfortunately, the number of non-zero vertices in y could be very small, and so y would
not help find a way to partition all vertices.

We can, however, apply the algorithm of the previous section recursively: after we find y,
we remove the non-zero vertices from G (because y gives us a way to partition them with
few violating edges) and then we can recurse on the residual graph. If the (volume of) the
residual graph is very small, then we already almost have a global cut, and if the volume
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of the residual graph is large, then the optimal cut of G is still a good cut in the residual
graph, and it implies that λn is close to 2 and that we can find a y of small bipartiteness
ratio, and so on.

The overall algorithm is as follows:

RecursiveSpectralCut (G = (V,E))

• Use algorithm of previous section to find disjoint sets of vertices A,B such that

2E(A) + 2E(B) + E(A ∪B, V −A ∪B) ≤
√

2− 2λn · vol(A ∪B)

• If V = A ∪B, then return (A,B)

• Else

– Let V ′ := V − (A ∪ B), and let G′ = (V ′, E′) be the subgraph of G induced by
V ′

– (C, V ′ − C) := RecursiveSpectralCut (G′ = (V ′, E′))

– Return best cut between (C ∪A, (V ′ − C) ∪B) and (C ∪B, (V ′ − C) ∪A)

We prove the following bound.

Lemma 6.2 If maxcut(G) = 1 − ε, then RecursiveSpectralCut G finds a cut crossed
by at least (1− 4

√
ε)|E| edges.

Proof: We proceed by induction on the number of recursive steps.

If there is no recursive call, then A ∪ B = V , and so (A,B) is already a cut. The number
of edges of G that do not cross the cut is

E(A) + E(B) ≤ 1

2

√
2 · (2− λn) · vol(V ) ≤ 2

√
ε · |E| ≤ 4

√
ε|E|

because 2− λn ≤ 2ε and vol(V ) = 2|E|. This settles the base case.

For the inductive step, the number of edges not cut by the algorithm is at most

E(A) + E(B) +
1

2
E(A ∪B, V ′) + (|E′| − E′(C, V ′ − C))

because we should count all the edges with both endpoints in A and both endpoints in B,
all the edges of G′ not cut in the recursive step, and half of the edges from A ∪ B to V ′,
because the best way of combining the cuts loses at most half of those edges.

By using the fact that 2− λn ≤ 2ε and the inductive hypothesis we have

E(A) + E(B) +
1

2
E(A ∪B, V ′) ≤

√
ε · vol(A ∪B)
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|E′| − E′(C, V ′ − C) ≤ 4
√
ε′ · |E′|

where ε′ is defined so that 1− ε′ = maxcut(G′).

Let us call ρ := |E|−|E′|
|E| the fraction of edges of G that is not in G′. Then we have

vol(A ∪B) ≤ 2|E − E′| = 2ρ|E|

and
|E′| = |E| · (1− ρ)

We also have
ε′|E′| ≤ ε|E|

because the number of edges not cut by the optimal cut of G′ is at most the number of
edges not cut by the optimal cut of G, given that G′ is a subgraph of G. So we have

ε′ ≤ ε · |E|
|E′|

= ε · 1

1− ρ

Putting everything together, the number of uncut edges is at most

√
ε · vol(A ∪B) + 4

√
ε′ · |E′|

≤
√
ε · 2ρ|E|+ 4

√
ε · (1− ρ)|E|

≤ 4
√
ε|E|

where the last line is equivalent to

2ρ+ 4
√

1− ρ ≤ 4

which follows from the fact that√
1− ρ ≤

√(
1− ρ

2

)2
= 1− ρ

2

�

For small ε, the bound of the previous lemma is close to the bound achieved by the Goemans-
Williamson semidefinite programming-based algorithm, that, under the assumption that
maxcut(G) = 1− ε, finds a cut crossed by about a 1− 2

π

√
·ε fraction of edges, which is best

possible for polynomial time algorithms assuming the unique games conjecture.

The bound of the lemma is not very good for large ε, however: if ε > 1
64 , the lemma

guarantees a number of cut edges that is less than half the number of edges, which is worse
than the performance of a simple greedy algorithm, and if ε > 1

16 the lemma does not
guarantee than any edge at all is cut.

If one always chooses the best between the cut returned by the recursion and a greedy
cut, it is possible to derive an analysis that works well even in graphs in which the value
of maxcut(G) is small, and show that the algorithm finds a cut crossed by at least a
.531 ·maxcut(G) fraction of edges.
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Chapter 7

Cheeger-type Inequalities for λk

In which we state an analog of Cheeger’s inequalities for the k-th smallest Laplacian eigen-
value, and we discuss the connection between this result and the analysis of spectral parti-
tioning algorithms

7.1 Cheeger-type Inequalities for λk

Let G = (V,E) be an undirected d-regular graph, A its adjacency matrix, L = I − 1
dA its

normalized Laplacian matrix, and 0 = λ1 ≤ · · · ≤ λn ≤ 2 be the eigenvalues of L, counted
with multiplicities and listed in non-decreasing order.

In Handout 2, we proved that λk = 0 if and only if G has at least k connected components,
that is, if and only if there are k disjoint sets S1, . . . , Sk such that φ(Si) = 0 for i = 1, . . . , k.
In this lecture and the next one we will prove a robust version of this fact.

First we introduce the notion of higher-order expansion. If S1, . . . , Sk is a collection of
disjoint sets, then their order-k expansion is defined as

φk(S1, . . . , Sk) = max
i=1,...,k

φ(Si)

and the order-k expansion of a graph G is

φk(G) = min
S1,...,Sk disjoint

φ(S1, . . . , Sk)

If the edges of a graph represent a relation of similarity of affinity, a low-expansion collection
of sets S1, . . . , Sk represents an interesting notion of clustering, because the vertices in each
set Si are more related to each other than to the rest of the graph. (Additional properties
are desirable in a good clustering, and we will discuss this later.)

We will prove the following higher-order Cheeger inequalities:
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λk
2
≤ φk(G) ≤ O(k3.5)

√
λk

Stronger upper bounds are known, but the bound above is easier to prove from scratch. It
is known that φk(G) ≤ O(k2)

√
λk and that φk(G) ≤ Oε(

√
log k) ·

√
λ(1+ε)·k.

7.2 The Easy Direction

As usual, the direction λk
2 ≤ φk(G) is the easy one, and it comes from viewing λk as a sort

of continuous relaxation of the problem of minimizing order-k expansion.

Recall that, in order to prove the easy direction of Cheeger’s inequality for λ2, we proved
that if x and y are two orthogonal vectors, both of Rayleigh quotient at most ε, then the
Rayleigh quotient of their sum is at most 2ε. A similar argument could be made to show
that the Rayleigh quotient of the sum of k such vectors is at most kε. Such results hold for
every positive semidefinite matrix.

In the special case of the Laplacian of a graph, and of vectors that are not just orthogonal
but actually disjointly supported, then we can lose only a factor of 2 instead of a factor of
k. (The support of a vector is the set of its non-zero coordinates; two vectors are disjointly
supported if their supports are disjoint.)

Lemma 7.1 Let x(1), . . . ,x(k) be disjointly supported vectors. Then

RL

(∑
i

x(i)

)
≤ 2 · max

i=1,...,k
RL(x(i))

Proof: We just have to prove that, for every edge {u, v},(∑
i

x(i)
u − x(i)

v

)2

≤ 2
∑
i

(x(i)
u − x(i)

v )2

The support disjointness implies that there is an index j such that x
(i)
u = 0 for i 6= j, and

an index k such that x
(i)
v = 0 for i 6= k. If j = k, then(∑
i

x(i)
u − x(i)

v

)2

= (x(j)
u − x(j)

v )2 =
∑
i

(x(i)
u − x(i)

v )2

and, if j 6= k, then (∑
i

x(i)
u − x(i)

v

)2

= (x(j)
u − x(k)

v )2

≤ 2(x(j)
u )2 + 2(x(k)

v )2 = 2
∑
i

(x(i)
u − x(i)

v )2
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and now, using also the fact that disjoint support implies orthogonality, we have

RL

(∑
i

x(i)

)
=

∑
{u,v}

(∑
i x

(i)
u − x(i)

v

)2

∥∥∑
i x

(i)
∥∥2

≤ 2

∑
i

∑
{u,v}∈E(x

(i)
u − x(i)

v )2∑
i ||x(i)||2

≤ 2 max
i=1,...,k

RL(x(i))

�

To finish the proof of the easy direction, let S1, . . . , Sk be sets such that φ(Si) ≤ φ(G)
for every i. Consider the k-dimensional space X of linear combinations of the indicator
vectors 1Si of such sets. The indicator vectors have Rayleigh quotient at most φ(G) and
are disjointly supported, so all their linear combinations have Rayleigh quotient at most
2φ(G). We have found a k-dimensional space of vectors all of Rayleigh quotient ≤ 2φ(G),
which proves λk ≤ 2φ(G).

7.3 The Difficult Direction: Main Lemma

We will prove the following result

Lemma 7.2 (Main) Let x(1), . . . ,x(k) be orthonormal vectors. Then we can find disjointly
supported non-negative vectors y(1), . . . ,y(k) such that for every i = 1, . . . , k

RL(y(i)) ≤ O(k7) · max
j=1,...,k

RL(x(j))

By applying the Main Lemma to the eigenvectors of λ1, . . . , λk, we get disjointly supported
vectors y(1), . . . ,y(k) all of Rayleigh quotient at most O(k7) · λk. In a past lecture, we
proved that for every non-negative vector y there is a subset S of its support such that
φ(S) ≤

√
2RL(y), and applying this fact to the vectors y(1), . . . ,y(k) we find k disjoint sets

all of expansion at most O(k3.5) ·
√
λk, proving

φk(G) ≤ O(k3.5) ·
√
λk

It is possible, with a more involved proof, to improve the O(k7) factor in the conclusion
of the Main Lemma to O(k6), implying that φk(G) ≤ O(k3) ·

√
λk. A different approach,

which we will not discuss, is used to show that, given k orthonormal vectors, one can find
k disjoint sets S1, . . . , Sk such that, for all i,

φ(Si) ≤ O(k2) ·
√

max
j=1,...,k

RL(x(j))
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implying φk(G) ≤ O(k2) ·
√
λk, which is the best known bound.

Note that, in all the known arguments, the bounds still hold if one replaces λk by the
(possibly smaller) quantity

inf
x(1),...,x(k) orthonormal

max
i=1,...,k

RL(x(i)) (7.1)

There are graphs, however, in which

φk(G) ≥ Ω(
√
k) ·

√
inf

x(k),...,x(k) orthonormal
max
i=1,...,k

RL(x(i))

so, if a bound of the form φk(G) ≤ (log k)O(1) ·
√
λk is true, then, in order to prove it, we

need to develop new techniques that distinguish between λk and the quantity (7.1).

7.4 The Spectral Embedding

Given orthonormal vectors x(1), . . . ,x(k) as in the premise of the Main Lemma, we define
the mapping F : V → Rk

F (v) := (x(1)
v , . . . , x(k)

v ) (7.2)

If x(1), . . . ,x(k) are the eigenvectors of the k smallest Laplacian eigenvalues of L, then F (·)
is called the spectral embedding of G into Rk. Spectral clustering algorithms compute such
an embedding, and then find clusters of nodes by clustering the points {F (v) : v ∈ V } using
geometric clustering algorithms, such as k-means, according either to Euclidian distance,
or to the normalized distance function

dist(u, v) :=

∥∥∥∥ F (u)

||F (u)||
− F (v)

||F (v)||

∥∥∥∥ (7.3)

Our construction of disjointly supported vectors with small Rayleigh quotient will proceed
similarly, by working only with the points {v : F (v)} and forgetting the edge structure of
the graph, and by making use of the above distance function.

To develop some intuition about the spectral mapping, we introduce a notion of Laplacian
Rayleigh quotient for a mapping f : V → Rk, defined, by formally replacing absolute values
with norms, as

RL(f) :=

∑
{u,v} ||f(u)− f(v)||2

d
∑

v ||f(v)||2

For a mapping F : V → Rk defined in terms of k orthonormal vectors x(i) as in (8.1), we
have
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RL(F ) =

∑
{u,v}

∑
i (x

(i)
u − x(i)

v )2

d
∑

v

∑
i(x

(i)
v )2

=

∑
i

∑
{u,v} (x

(i)
u − x(i)

v )2

dk

=
1

k

∑
i

∑
{u,v} (x

(i)
u − x(i)

v )2

d

=
1

k

∑
i

RL(x(i))

≤ max
i=1,...,k

RL(x(i))

In particular, if x(i) are the eigenvectors of the k smallest Laplacian eigenvalues, then
RL(F ) ≤ λk.
Let us use this setup to prove again that if λk = 0 then G has at least k connected
components. If λk = 0, and we construct F (·) using the eigenvectors of the smallest
Laplacian eigenvalues, then RL(F ) = 0, which means that F (u) = F (v) for every edge
{u, v}, and so F (u) = F (v) for every u and v which are in the same connected component.
Equivalently, if F (u) 6= F (v), then u and v are in different connected component. For every
point in the range {F (v) : v ∈ V } in the range of F (·), let us consider its pre-image, and
let S1, . . . , St be the sets constructed in this way. Clearly, every set has expansion zero.

How many sets do we have? We claim that the range of F (·) must contain at least k distinct
points, and so t ≥ k and G has at least k connected component. To prove the claim, consider
the matrix X whose rows are the vectors x(i); since the rows of X are linearly independent,
X has full rank k; but if the range of F (·) contained ≤ k− 1 distinct points, then X would
have ≤ k − 1 distinct columns, and so its rank would be ≤ k − 1.

Our proof of the higher-order Cheeger inequality will be somewhat analogous to the previous
argument: we will use the fact that, if the Rayleigh quotient of F (·) is small, then the
endpoints of edges {u, v} are typically close, in the sense that the distance defined in (8.2)
between u and v will typically be small; we will also use the fact that, because the x(i) are
orthonormal, F (·) tends to “spread out” vertices across Rk, so that we can find k regions
of Rk each containing a large (in a certain weighted sense) number of vertices, and such
that the regions are well-separated according to the distance (8.2), implying that there are
few edges crossing from one region to the other, so that the vertices in each region are a
non-expanding set. (This is an imprecise description of the argument, but it conveys the
basic intuition.)

7.5 Overview of the Proof of the Main Lemma

We will break up the proof of the Main Lemma into the following two Lemmas.
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Lemma 7.3 (Well-Separated Sets) Given a function F : V → Rk defined in terms of k
orthonormal vectors as in (8.1), we can find k disjoint subsets of vertices A1, . . . , Ak such
that

• For every i = 1, . . . , k,
∑

v∈Ai ||F (v)||2 ≥ 1
4

• For every u and v belonging to different sets, dist(u, v) ≥ Ω(k−3)

Lemma 7.4 (Localization) Given a function F : V → Rk defined in terms of k or-
thonormal vectors as in (8.1), and t sets A1, . . . , At such that, for every i = 1, . . . , t,∑

v∈Ai ||F (v)||2 ≥ 1
4 and,for every u, v in different sets dist(u, v) ≥ δ, we can construct

t disjointly supported vectors y(1), . . . ,y(t) such that for every i = 1, . . . , t, we have

RL(y(t)) ≤ O(k · δ−2) ·RL(F )
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Chapter 8

Cheeger-type Inequalities for λk, cont’d

In which we state an analog of Cheeger’s inequalities for the k-th smallest Laplacian eigen-
value, and we discuss the connection between this result and the analysis of spectral parti-
tioning algorithms

8.1 Review

Let G = (V,E) be a d-regular undirected graph, L its normalized Laplacian, 0 = λ1 ≤ · · · ≤
λn ≤ 2 be the Laplacian eigenvalues, and φk(G) be the order-k expansion of G.

We want to prove

φk(G) ≤ O(k3.5) ·
√
λk

We will prove the somewhat stronger result that, given k orthonormal vectors x(1), . . . ,x(k),
we can find k disjointly supported vectors y(1), . . . ,y(k) such that, for every i = 1, . . . , k,

RL(y(i)) ≤ O(k7) · max
j=1,...,k

RL(x(i))

In order to do that, we define the mapping

F (v) := (x(1)
v , . . . , x(k)

v ) (8.1)

of vertices to Rk and the normalized distance

dist(u, v) :=

∥∥∥∥ F (u)

||F (u)||
− F (v)

||F (v)||

∥∥∥∥ (8.2)

between vertices, and we are going to prove the following two lemmas.
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Lemma 8.1 (Localization) Given t sets A1, . . . , At such that, for every i = 1, . . . , t,∑
v∈Ai ||F (v)||2 ≥ 1

2 and,for every u, v in different sets dist(u, v) ≥ δ, we can construct

t disjointly supported vectors y(1), . . . ,y(t) such that for every i = 1, . . . , t, we have

RL(y(t)) ≤ O(k · δ−2) ·RL(F )

Lemma 8.2 (Well-Separated Sets) There are k disjoint subsets of vertices A1, . . . , Ak
such that

• For every i = 1, . . . , k,
∑

v∈Ai ||F (v)||2 ≥ 1
2

• For every u and v belonging to different sets, dist(u, v) ≥ Ω(k−3)

Recall that, for a function f : V → Rk the Rayleigh quotient of f is defined as

RL(f) :=

∑
{u,v} ||f(u)− f(v)||2

d
∑

v ||f(v)||2

and, by definition of F , we have

RL(F ) =
1

k

∑
i

RL(x(i))

8.2 Some Preliminaries

We will prove some simple properties of the embedding F (·) and of the distance function
dist(·, ·).
First, we observe that

∑
v∈V
||F (v)||2 =

∑
v

∑
i

(x(i)
v )2 =

∑
i

||x(i)||2 = k

Next, we prove the sense in which F (·) “spreads out” vertices across Rk.

Lemma 8.3 For every unit vector w ∈ Rk,∑
v∈V
〈F (v),w〉2 = 1

Proof: Consider the k × n matrix X whose rows are the vectors x(i) and whose columns
are the points F (v). Then we have∑

v∈V
〈F (v),w〉2 = ||XTw||2 = wTXXTw = wTw = 1

41



where we used the fact that the rows of X are orthogonal and so XXT is the identity. �

This means that, for every direction, the points F (v) correlate with that direction in the
same way, regardless of the direction itself.

In the proof of the localization lemma, we will make use of the following inequality: for
every two vectors x,y,

| ||x|| − ||y|| | ≤ ||x− y||

which is a consequence of Cauchy-Schwarz:

(||x|| − ||y||)2 = ||x||2 + ||y||2 − 2||x|| · ||y||

≤ ||x||2 + ||y||2 − 2〈x,y〉

= ||x− y||2

8.3 Localization

In this section we prove Lemma 8.1.

8.3.1 Proof Ideas

The basic idea is that we would like to define the vectors y(i) as

y(i)
v := 1Ai(v) · ||F (v)||

The denominator of the Rayleigh quotient of such a vector is, by definition, at least 1/2,
and we might hope to upper bound the numerator of the Rayleigh quotient of y(i) in terms
of the numerator of the Rayleigh quotient of F , which is kRL(F ).

Indeed, every edge {u, v} with both endpoints outside of Ai contributes zero to the nu-
merator of the Rayleigh quotient of y(i), and every edge {u, v} with both endpoints in Ai
contributes

( ||F (u)|| − ||F (v)|| )2 ≤ ||F (u)− F (v)||2

to the numerator of the Rayleigh quotient of y(i), and the right-hand-side above is the
contribution of the edge to the numerator of the Rayleigh quotient of F .

So far, so good, but the problem comes from edges {u, v} with one endpoint u ∈ Ai and
one endpoint v 6∈ Ai. Such an edge contributes ||F (u)||2 to the Rayleigh quotient of y(i)

and ||F (u)−F (v)||2 to the Rayleigh quotient of F , and the former quantity could be much
larger than the latter. If dist(u, v) is large, however, ||F (u)||2 cannot be much larger than
||F (u)− F (v)||2, because of the following fact
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Lemma 8.4
||F (v)|| · dist(u, v) ≤ 2||F (u)− F (v)|| (8.3)

Proof:

||F (v)|| · dist(u, v) = ||F (v)|| ·
∥∥∥∥ F (u)

||F (u)||
− F (v)

||F (v)||

∥∥∥∥
=

∥∥∥∥F (u) · ||F (v)||
||F (u)||

− F (v)

∥∥∥∥
≤
∥∥∥∥F (u) · ||F (v)||

||F (u)||
− F (u)

∥∥∥∥+ ‖F (u)− F (v)‖

=

∥∥∥∥F (u) ·
(
||F (v)||
||F (u)||

− 1

)∥∥∥∥+ ‖F (u)− F (v)‖

= ||F (u)|| ·
∣∣∣∣ ||F (v)||
||F (u)||

− 1

∣∣∣∣+ ‖F (u)− F (v)‖

= | ||F (v)|| − ||F (u)|| |+ ‖F (u)− F (v)‖

≤ 2‖F (u)− F (v)‖

�

We can conclude that the only problem comes from edges {u, v} such that u ∈ Ai, v 6∈ Ai,
and dist(u, v) is small. To deal with such edges, we will modify the definition of y(i), and
use a “smoothed” version of the indicator function of Ai instead of the actual indicator.

8.3.2 Proof

If v is a vertex and A is a set of vertices, we define

dist(v,A) = min
u∈A

dist(v, u)

For each i, we define the following smooth indicator function of Ai:

τi(v) =


1 if v ∈ Ai
0 if dist(v,Ai) ≥ δ

2
1− 2

δ · dist(v,Ai) otherwise

Notice that the functions τi(·) are disjointly supported: there cannot be a vertex v such
that τi(v) > 0 and τj(v) > 0 for i 6= j, otherwise we would have dist(v,Ai) <

δ
2 and

dist(v,Aj) <
δ
2 , contradicting the well-separated condition on the sets Ai.

We define the vectors y(i) as

y(i)
v = τi(v) · ||F (v)||
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The vectors y(i) are disjointly supported, and it remains to understand their Rayleigh
quotient.

The denominator of the Rayleigh quotient of y(i) is

∑
v∈V

τ2
i (v) · ||F (v)||2 ≥

∑
v∈Ai

||F (v)||2 ≥ 1

2

The contribution of an edge {u, v} to the numerator is the square of

|y(i)
v − y(i)

u | = | τi(v) · ||F (v)|| − τi(u) · ||F (u)|| |

≤ | τi(v) · ||F (v)|| − τi(v) · ||F (u)|| |+ | τi(v) · ||F (u)|| − τi(u) · ||F (u)|| |

= τi(v) · ||F (v)− F (u)||+ ||F (u)|| · |τi(v)− τi(u)|

≤ ||F (v)− F (u)||+ ||F (u)|| · 2

δ
· dist(v, u)

≤ ||F (v)− F (u)|| ·
(

1 +
4

δ

)
where we used the inequality

|τi(v)− τi(u)| ≤ 2

δ
|dist(v,Ai)− dist(u,Ai)| ≤

2

δ
dist(v, u)

The numerator of the Rayleigh quotient of y(i) is thus

∑
{u,v}∈E

|y(i)
v − y(i)

u |2 ≤ O(δ−2)
∑
{u,v}∈E

||F (v)− F (u)||2 = O(δ−2) · kRL(F )

and this proves Lemma 8.1.

8.4 Well-Separated Sets

In this section we prove Lemma 8.2, which follows easily from the following result.

Lemma 8.5 We can find disjoint sets of vertices T1, . . . , Tm such that

•
∑m

i=1

∑
v∈Ti ||F (v)||2 ≥ k − 1

4

• For every u, v in different sets, dist(u, v) ≥ Ω(k−3)

• For every set Ti,
∑

v∈Ti ||F (v)||2 ≤ 1 + 1
4k

44



We can derive Lemma 8.2 from Lemma 8.5 as follows. Let us call the quantity
∑

v∈A ||F (v)||2
the mass of a set A. Starting from the sets T1, . . . , Tm promised by Lemma 8.5 we run the
following process: as long as there are two sets both of mass < 1

2 we merge them. Call
A1, . . . , At the sets of mass ≥ 1

2 obtained at the end of this process; in addition, there may
be one more set of mass < 1

2 . Every set has mass ≤ 1 + 1
4k . This means that the total mass

of the sets is at most 1
2 + t ·

(
1 + 1

4k

)
≥ k − 1

4 , which implies t ≥ k. Thus we have found
k sets of vertices, each of mass at least 1/2, and such that any two sets have separation
Ω(k−3).

Now we turn to the proof of Lemma 8.5. We are going to use the fact that, for every
small cone in Rk, the mass of vertices v such that F (v) is in the cone is also small and, in
particular, it can made at most 1 + 1

4k . We will prove the Lemma by covering almost all
the points F (v) using a collection of well-separated small cones.

We first formalize the above intuition about cones. If R (for region) is a subset of the unit
sphere in Rn, then the diameter of R is

diam(R) := sup
w,z∈R

||w − z||

and the cone generated by R is the set {αw : α ∈ R≥0,w ∈ R} of non-negative scalar
multiples of elements of R. The set of vertices covered by R, denoted V (R) is the set of
vertices v such that F (v) is in the cone generated by R or, equivalently,

V (R) :=

{
v ∈ V :

F (v)

||F (v)||
∈ R

}
If R has small diameter, then V (R) has small mass.

Lemma 8.6 For every subset R of the unit sphere,

∑
v∈V (R)

||F (v)||2 ≤
(

1− 1

2
(diam(R))2

)−2

Proof: For every two unit vectors w and z, we have

〈z,w〉 = 1− 1

2
||w − z||2

For every vertex v, call

F̄ (v) :=
F (v)

||F (v)||

Let w be a vector in R. Then we have

1 ≥
∑

v∈V (R)

〈F (v),w〉2
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=
∑

v∈V (R)

||F (v)||2 · 〈F̄ (v),w〉2

=
∑

v∈V (R)

||F (v)||2 ·
(

1− 1

2
||F̄ (v)−w||2

)2

≥
∑

v∈V (R)

||F (v)||2 ·
(

1− 1

2
(diam(R))2

)2

�

In particular, if diam(R) ≤ 1√
5k

, then the mass of V (R) is at most

(
1− 1

10k

)−2

≤
(

1− 1

5k

)−1

= 1 +
1

5k − 1
≤ 1 +

1

4k

Another observation is that, for every two subsets R1, R2 of the unit sphere,

min
u∈V (R1),v∈V (R2)

dist(u, v) ≥ min
w∈R1,z∈R2

||w − z||

Our approach will be to find disjoint subsets R1, . . . , Rm of the unit sphere, each of diameter
at most 1/2

√
k, such that the total mass of the sets V (R1), . . . , V (Rm) is at least k− 1

4 and
such that the separation between any two Ri, Rj is at least Ω(k−3).

To do this, we tile Rk with axis-parallel cubes of side L = 1
2k , which clearly have diameter at

most 1
2
√
k
, and, for every cube C, we define its core C̃ to be a cube with the same center as

C and of side L ·
(
1− 1

4k2

)
. Note two points in the core of two different cubes have distance

at least 1
8k3

. Let now R1, R2, . . . be the intersections of the cube cores with the unit sphere.
Since each Ri is a subset of a core of a cube, it has diameter at most 1

2
√
k
, and the distance

between any two points in different regions is at least 1
8k3

. We claim that there is a way to
choose the location of the centers of the cubes so that

∑
i

∑
v∈V (Ri)

||F (v)||2 ≥ k − 1
4 .

Let us start by a fixed configuration of the cubes and then apply an axis-parallel random
shift (by adding to each coordinate, a random real in the range [0, L]. Then, for each fixed
point in Rn and, in particular, for each point F̄ (v), the probability that it falls in the core
of a cube after the shift is at least 1 − 1

4k , so the average mass of the vertices covered by
the regions is at least k − 1

4 , and there must exist a shift that is at least as good.

46



Chapter 9

Spectral Algorithms Wrap-up

In which we talk about even more generalizations of Cheeger’s inequalities, and we analyze
the power method to find approximate eigenvectors, thus having a complete description of a
polynomial-time approximation algorithm for sparsest cut

9.1 Irregular Graphs

For simplicity, we proved our results on λ2 and λk for regular graphs. Those results extend,
essentially with the same proofs, to the case of irregular undirected graphs. In an irregular
graph G = (V,E), the notion that generalizes edge expansion is called conductance. If dv
is the degree of vertex v, then the conductance of set S of vertices is

φ(S) :=
E(S, V − S)∑

v∈S dv

We will call the sum of the degrees of a set of vertices the volume of the set, and denote it
vol(S) :=

∑
v∈S dv. The conductance of the graph G is

φ(G) := min
S:vol(S)≤ 1

2
vol(V )

φ(S)

Higher-order conductance is defined as higher-order expansion, but with conductance re-
placing expansion in the definition.

The Cheeger inequalities

λ2

2
≤ φ(G) ≤

√
2λ2

still hold, with the same proof. With some abuse of notation, we will call the following
quantity the Rayleigh quotient of x

RL(x) :=

∑
{u,v}∈E(xu − xv)2∑

v∈V dvx
2
v
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even if, technically, it is the Rayleigh quotient of D1/2x, where D is the diagonal matrix of
degrees.

We can also adapt the proof of the higher-order Cheeger inequality to show

λk
2
≤ φk(G) ≤ O(k3.5) ·

√
λk

9.2 More Cheeger-type Bounds

We proved that if (SF , V −SF ) is the cut found by Fiedler’s algorithm using the eigenvector
of λ2, then

φ(SF , V − SF ) ≤ 2
√
φ(G)

which is a good bound, although it usually underestimates the quality of the solutions found
in practice. (There are graphs, however, for which the above inequality is tight within a
constant factor.)

One case in which we can improve the analysis is when there are not too many eigenvalues
close to λ2

Theorem 9.1 There is a constant c such that, if (SF , V − SF ) is the cut obtained by
Fiedler’s algorithm using an eigenvector for λ2, then, for every k ≥ 2,

φ(SF , V − SF ) ≤ c · k · λ2√
λk

So we have

φ(SF , V − SF ) ≤ 2c · φ(G) ·min
k≥2

k√
λk

which is a better bound for families of graphs in which, for some k, λk >> k2λ2.

We will not have time to prove Theorem 9.1, but we will state the two main pieces of its
proof.

Lemma 9.2 Let x ∈ RV≥0 be a non-negative vector. Then, for every k, there is a non-

negative vector y ∈ RV≥0 whose entries take at most 2k distinct values and such that

||x− y||2 ≤ RL(x)

λk
||x||2

That is, if RL(x) >> λk, then there are 2k values such that most entries of x are close to
one of those 2k values.
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Lemma 9.3 There is a constant c′ such that, for every non-negative vectors x ∈ RV≥0 and

y ∈ RV≥0, if y is such that its entris contain only k distinct values, then there is a threshold
t > 0 such that

φ({v : xv ≥ t}) ≤ c′ · k ·
(
RL(x) +

√
RL(x) · ||x− y||

||x||

)
The above lemma should be compared to the fact, which was a major piece in the proof
of Cheeger’s inequality, that if x ∈ RV≥0 is an arbitrary non-negative vector, then there is a
threshold t > 0 such that

φ({v : xv ≥ t}) ≤
√

2RL(x)

One obtains Theorem 9.1 in the following. Start from an eigenvector x of λ2 and, using the
first step in the proof of Cheeger’s inequality, obtain a vector x′ ∈ RV≥0 with non-negative
entries such that RL(x′) ≤ RL(x) = λ2 and such that the support of x contains at most
|V |/2 vertices.

Use Lemma 9.2 to find a vector y with non-negative entries and with at most 2k distinct
values among its entries such that ||x′ − y||2 ≤ λ2

λk
||x′||2. Then use Lemma 9.3 and the fact

that λk ≤ 2 to conclude that there exists at t > 0 such that

φ({v : x′v ≥ t}) ≤ O(k) · λ2√
λk

The set {v : x′v ≥ t} contains at most |V |/2 vertices, it is one of the cuts considered by
Fiedler’s algorithm on input x.

Another property of graphs in which λk is large for small k is that they contain large
expanders as induced subgraphs.

Theorem 9.4 There is a constant c such that, for every graph G and every k, there exists
a partition of the vertices into ` ≤ k sets (S1 . . . , S`) such that, if we call Gi the subgraph
induced by the vertex set Si, we have

φGi ≥ c
λk
k2

Theorem 9.5 If φk+1 > (1 + ε)φk, then there is a partition of the vertices into k subsets
(S1, . . . , Sk such that

∀i ∈ {1, . . . , k} : φGi ≥ Ω
( ε
k

)
· φk+1, φ(Si) ≤ kφk

9.3 The Power Method

Earlier in this class, we showed that, if G = (V,E) is a d-regular graph, and L is its
normalized Laplacian matrix with eigenvalues 0 = λ1 ≤ λ2 . . . ≤ λn, given an eigenvector
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of λ2, Fiedler’s algorithm finds, in nearly-linear time O(|E|+ |V | log |V |), a cut (S, V − S)
such that φ(S) ≤ 2

√
φ(G).

More generally, if, instead of being given an eigenvector x such that Lx = λ2x, we are
given a vector x ⊥ 1 such that xTLx ≤ (λ2 + ε)xTx, then the algorithm finds a cut
such that φ(S) ≤

√
4φ(G) + 2ε. We will now see how to compute such a vector using

O((|V |+ |E|) · 1
ε · log |V |ε ) arithmetic operations.

A symmetric matrix is positive semi-definite (abbreviated PSD) if all its eigenvalues are
nonnegative. We begin by describing an algorithm that approximates the largest eigenvalue
of a given symmetric PSD matrix. This might not seem to help very much because because
we want to compute the second smallest, not the largest, eigenvalue. We will see, however,
that the algorithm is easily modified to accomplish what we want.

9.3.1 The Power Method to Approximate the Largest Eigenvalue

The algorithm works as follows

Algorithm Power

Input: PSD matrix M , parameter k

• Pick uniformly at random x0 ∼ {−1, 1}n

• for i := 1 to k
xi := M · xi−1

• return xk

That is, the algorithm simply picks uniformly at random a vector x with ±1 coordinates,
and outputs Mkx.

Note that the algorithm performs O(k · (n + m)) arithmetic operations, where m is the
number of non-zero entries of the matrix M .

Theorem 9.6 For every PSD matrix M , positive integer k and parameter ε > 0, with
probability ≥ 3/16 over the choice of x0, the algorithm Power outputs a vector xk such that

xTkMxk

xTk xk
≥ λ1 · (1− ε) ·

1

1 + 4n(1− ε)2k

where λ1 is the largest eigenvalue of M .

Note that, in particular, we can have k = O(log n/ε) and
xTkMxk
xTk xk

≥ (1−O(ε)) · λ1.

Let λ1 ≥ · · ·λn be the eigenvalues of M , with multiplicities, and v1, . . . ,vn be a system of
orthonormal eigenvectors such that Mvi = λivi. Theorem 9.6 is implied by the following
two lemmas
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Lemma 9.7 Let v ∈ Rn be a vector such that ||v|| = 1. Sample uniformly x ∼ {−1, 1}n.
Then

P
[
|〈x,v〉| ≥ 1

2

]
≥ 3

16

Lemma 9.8 For every x ∈ Rn, for every positive integer k and positive ε > 0, if we define
y := Mkx, we have

yTMy

yTy
≥ λ1 · (1− ε) ·

(
1 +

||x||2

〈x,v1〉2
(1− ε)2k

)−1

It remains to prove the two lemmas.

Proof: (Of Lemma 9.7) Let v = (v1, . . . , vn). The inner product 〈x,v〉 is the random
variable

S :=
∑
i

xivi

Let us compute the first, second, and fourth moment of S.

ES = 0

ES2 =
∑
i

v2
i = 1

ES4 = 3

(∑
i

v2
i

)
− 2

∑
i

v4
i ≤ 3

Recall that the Paley-Zygmund inequality states that if Z is a non-negative random variable
with finite variance, then, for every 0 ≤ δ ≤ 1, we have

P[Z ≥ δ EZ] ≥ (1− δ)2 · (EZ)2

EZ2
(9.1)

which follows by noting that

EZ = E[Z · 1Z<δ EZ ] + E[Z · 1Z≥δ EZ ] ,

that

E[Z · 1Z<δ EZ ] ≤ δ EZ ,
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and that

E[Z · 1Z≥δ EZ ] ≤
√
EZ2 ·

√
E 1Z≥δ EZ

=
√

EZ2
√

P[Z ≥ δ EZ]

We apply the Paley-Zygmund inequality to the case Z = S2 and δ = 1/4, and we derive

P
[
S2 ≥ 1

4

]
≥
(

3

4

)2

· 1

3
=

3

16

�

Remark 9.9 The proof of Lemma 9.7 works even if x ∼ {−1, 1}n is selected according to
a 4-wise independent distribution. This means that the algorithm can be derandomized in
polynomial time.

Proof: (Of Lemma 9.8) Let us write x as a linear combination of the eigenvectors

x = a1v1 + · · ·+ anvn

where the coefficients can be computed as ai = 〈x,vi〉. We have

y = a1λ
k
1v1 + · · ·+ anλ

k
nvn

and so

yTMy =
∑
i

a2
iλ

2k+1
i

and
yTy =

∑
i

a2
iλ

2k
i

We need to prove a lower bound to the ratio of the above two quantities. We will compute
a lower bound to the numerator and an upper bound to the denominator in terms of the
same parameter.

Let ` be the number of eigenvalues larger than λ1·(1−ε). Then, recalling that the eigenvalues
are sorted in non-increasing order, we have

yTMy ≥
∑̀
i=1

a2
iλ

2k+1
i ≥ λ1(1− ε)

∑̀
i=1

a2
iλ

2k
i

We also see that
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n∑
i=`+1

a2
iλ

2k
i

≤ λ2k
1 · (1− ε)2k

n∑
i=`+1

a2
i

≤ λ2k
1 · (1− ε)2k · ||x||2

≤ a2
1λ

2k
1 (1− ε)2t · ||x||

2

a2
1

≤ ||x||
2

a2
1

(1− ε)2k
∑̀
i=1

a2
iλ

2k
i

So we have

yTy ≤
(

1 +
||x||2

a2
1

(1− ε)2k

)
·
∑̀
i=1

a2
i

giving

yTMy

yTy
≥ λ1 · (1− ε) ·

(
1 +
||x||2

a2
1

(1− ε)2k

)−1

�

Remark 9.10 Where did we use the assumption that M is positive semidefinite? What
happens if we apply this algorithm to the adjacency matrix of a bipartite graph?

9.3.2 Approximating the Second Largest Eigenvalue

Suppose now that we are interested in finding the second largest eigenvalue of a given PSD
matrix M . If M has eigenvalues λ1 ≥ λ2 ≥ · · ·λn, and we know the eigenvector v1 of λ2,
then M is a PSD linear map from the orthogonal space to v1 to itself, and λ2 is the largest
eigenvalue of this linear map. We can then run the previous algorithm on this linear map.

Algorithm Power2

Input: PSD matrix M , vector v1 parameter k

• Pick uniformly at random x ∼ {−1, 1}n

• x0 := x− v1 · 〈x,v1〉

• for i := 1 to k
xi := M · xi−1

• return xk
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If v1, . . . ,vn is an orthonormal basis of eigenvectors for the eigenvalues λ1 ≥ · · · ≥ λn of
M , then, at the beginning, we pick a random vector

x = a1v1 + a2v2 + · · · anvn

that, with probability at least 3/16, satisfies |a2| ≥ 1/2. (Cf. Lemma 9.7.) Then we
compute x0, which is the projection of x on the subspace orthogonal to v1, that is

x0 = a2v2 + · · · anvn

Note that ||x||2 = n and that ||x0||2 ≤ n.

The output is the vector xk

xk = a2λ
k
2v2 + · · · anλknvn

If we apply Lemma 9.8 to subspace orthogonal to v1, we see that when |a2| ≥ 1/2 we have
that, for every 0 < ε < 1,

xTkMxk

xTk xk
≥ λ2 · (1− ε) ·

1

4n(1− ε)2k

We have thus established the following analysis.

Theorem 9.11 For every PSD matrix M , positive integer k and parameter ε > 0, if v1 is
a length-1 eigenvector of the largest eigenvalue of M , then with probability ≥ 3/16 over the
choice of x0, the algorithm Power2 outputs a vector xk ⊥ v1 such that

xTkMxk

xTk xk
≥ λ2 · (1− ε) ·

1

1 + 4n(1− ε)2k

where λ2 is the second largest eigenvalue of M , counting multiplicities.

9.3.3 The Second Smallest Eigenvalue of the Laplacian

Finally, we come to the case in which we want to compute the second smallest eigenvalue
of the normalized Laplacian matrix L = I − 1

dA of a d-regular graph G = (V,E), where A
is the adjacency matrix of G.

Consider the matrix M := 2I − L = I + 1
dA. Then if 0 = λ1 ≤ . . . ≤ λn ≤ 2 are the

eigenvalues of L, we have that

2 = 2− λ1 ≥ 2− λ2 ≥ · · · ≥ 2− λn ≥ 0

are the eigenvalues of M , and that M is PSD. M and L have the same eigenvectors, and
so v1 = 1√

n
(1, . . . , 1) is a length-1 eigenvector of the largest eigenvalue of M .
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By running algorithm Power2, we can find a vector x such that

xTMxT ≥ (1− ε) · (2− λ2) · xTx

and
xTMxT = 2xTx− xTLx

so, rearranging, we have
xTLx

xTx
≤ λ2 + 2ε

If we want to compute a vector whose Rayleigh quotient is, say, at most 2λ2, then the
running time will be Õ((|V | + |E|)/λ2), because we need to set ε = λ2/2, which is not
nearly linear in the size of the graph if λ2 is, say O(1/|V |).
For a running time that is nearly linear in n for all values of λ2, one can, instead, apply
the power method to the pseudoinverse L+ of L. (Assuming that the graph is connected,
L+x is the unique vector y such that Ly = x, if x ⊥ (1, . . . , 1), and L+x = 0 if x is parallel
to (1, . . . , 1).) This is because L+ has eigenvalues 0, 1/λ2, . . . , 1/λn, and so L+ is PSD and
1/λ2 is its largest eigenvalue.

Although computing L+ is not known to be doable in nearly linear time, there are nearly
linear time algorithms that, given x, solve in y the linear system Ly = x, and this is
the same as computing the product L+x, which is enough to implement algorithm Power
applied to L+.

(Such algorithms will be discussed in the third part of the course. The algorithms will find
an approximate solution y to the linear system Ly = x, but this will be sufficient. In the
following, we proceed as if the solution was exact.)

In time O((V + |E|) · (log |V |/ε)O(1)), we can find a vector y such that y = (L+)kx, where x
is a random vector in {−1, 1}n, shifted to be orthogonal to (1, . . . , 1) and k = O(log |V |/ε).
What is the Rayleigh quotient of such a vector with respect to L?

Let v1, . . . ,vn be a basis of orthonormal eigenvectors for L and L+. If 0 = λ1 ≤ λ2 ≤ · · · ≤
λn are the eigenvalues of L, then we have

Lv1 = L+v1 = 0

and, for i = 1, . . . , n, we have

Lvi = λi L+vi =
1

λi

Write x = a2v2 + · · · anvn, where
∑

i a
2
i ≤ n, and ssume that, as happens with probability

at least 3/16, we have a2
2 ≥ 1

4 . Then

y =
n∑
i=2

ai
1

λki

and the Rayleigh quotient of y with respect to L is

55



yTLy

yTy
=

∑
i a

2
i

1
λ2k−1
i∑

i a
2
i

1
λ2ki

and the analysis proceeds similarly to the analysis of the previous section. If we let ` be
the index such that λ` ≤ (1 + ε) · λ2 ≤ λ`+1 then we can upper bound the numerator as

∑
i

a2
i

1

λ2k−1
i

≤
∑
i≤`

a2
i

1

λ2k−1
i

+
1

(1 + ε)2k−1λ2k−1
2

∑
i>`

a2
i

≤
∑
i≤`

a2
i

1

λ2k−1
i

+
1

(1 + ε)2k−1λ2k−1
2

· n

≤
∑
i≤`

a2
i

1

λ2k−1
i

+
1

(1 + ε)2k−1λ2k−1
2

· 4na2
2

≤
(

1 +
4n

(1 + ε)2k−1

)
·
∑
i≤`

a2
i

1

λ2k−1
i

and we can lower bound the denominator as

∑
i

a2
i

1

λ2k
i

≥
∑
i≤`

a2
i

1

λ2k
i

≥ 1

(1 + ε)λ2
·
∑
i≤`

a2
i

1

λ2k−1
i

and the Rayleigh quotient is

yTLy

yTy
≤ λ2 · (1 + ε) ·

(
1 +

4n

(1 + ε)2k−1

)
≤ (1 + 2ε) · λ2

when k = O
(

1
ε log n

ε

)
.
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Chapter 10

The Sparsest Cut Problem

In which we introduce the sparsest cut problem and the Leighton-Rao relaxation.

10.1 The Uniform Sparsest Cut problem, Edge Expansion
and λ2

Let G = (V,E) be an undirected graph with n := |V | vertices.

We define the uniform sparsity of a cut (S, V − S) as

uscG(S) :=
E(S, V − S)

|S| · |V − S|

(we will omit the subscript when clear from the context) and the uniform sparsest cut of a
graph is

usc(G) := min
S
uscG(S)

In d-regular graphs, approximating the uniform sparsest cut is equivalent (up to a factor
of 2 in the approximation) to approximating the edge expansion, because, for every cut
(S, V − S), we have

φ(S, V − S) =
E(S, V − S)

d ·min{|S|, |V − S|}
and, noting that, for every, S,

1

n
|S| · |V − S| ≤ min{|S|, |V − S|} ≤ 2

n
|S| · |V − S|
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we have, for every S,

φ(S, V − S) ≤ n

d
· usc(S) ≤ 2φ(S, V − S)

and so
φ(G) ≤ n

d
· usc(G) ≤ 2φ(G)

It will be instructive to see that, in d-regular graphs, λ2 is a relaxation of n
dusc(G), a fact

that gives an alternative proof of the easy direction λ2 ≤ 2φ(G) of Cheeger’s inequalities.

If G is d-regular, then λ2 satisfies

λ2 = min
x∈Rn−{0},x⊥1

∑
{u,v}∈E(xu − xv)2∑

v dx
2
v

= min
x∈Rn−{0},x⊥1

n

d
·
∑
{u,v}∈E(xu − xv)2∑
{u,v}(xu − xv)2

= min
x∈Rn−{0}

n

d
·
∑
{u,v}∈E(xu − xv)2∑
{u,v}(xu − xv)2

where the first identity above comes from the fact that

∑
{u,v}

(xu − xv)2 =
1

2

∑
(u,v)∈V 2

(xu − xv)2 = n
∑
v

x2
v −

∑
u,v

xuxv

= n
∑
v

x2
v −

(∑
v

xv

)2

= n
∑
v

x2
v − 〈x,1〉2

= n
∑
v

x2
v

and the second identity follows by noticing that the cost function is invariant by addition
of a multiple of 1, and so optimizing over all non-zero vectors gives the same result as
optimizing over all vectors orthogonal to 1.

On the other hand, the uniform sparsest cut problem can be formulated as

usc(G) = min
x∈{0,1}n−{0,1}

∑
{u,v}∈E(xu − xv)2∑
{u,v}(xu − xv)2

(because the square of a number in {−1, 0, 1} is the same as its absolute value) and we see
that λ2 can be considered a continuous relaxation of n

dusc(G).
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10.2 The Non-Uniform Sparsest Cut Problem

In the non-uniform sparsest cut problem, we are given two graphs G = (V,EG) and H =
(V,EH), over the same set of vertices; the non-uniform sparsity of a cut (S, V −S) is defined
as

nscG,H(S) :=
EG(S, V − S)

EH(S, V − S)

and the non-uniform sparsest cut problem is the optimization problem

nsc(G,H) := min
S

nscG,H(S)

Note that the non-uniform sparsest cut problem generalizes the sparsest cut problem (con-
sider the case in which H is a clique).

If H is the graph that contains the single edge {s, t}, then nsc(G,H) is the undirected
min-st-cut problem, in which we want to find the cut that separates two vertices s and t
and that minimizes the number of crossing edges.

10.3 The Leighton-Rao Relaxation

We can write the non-uniform sparsity of a set as

nscG,H(S) =

∑
{u,v}∈EG

|1S(u)− 1S(v)|∑
{u,v}∈EH

|1S(u)− 1S(v)|

The observation that led us to see λ2 as the optimum of a continuous relaxation of ndnscG,Kn
was to observe that |1S(u)−1S(v)| = |1S(u)−1S(v)|2, and then relax the problem by allowing
arbitrary functions x : V → R instead of indicator functions 1S : V → {0, 1}.
The Leighton-Rao relaxation of sparsest cut is obtained using, instead, the following obser-
vation: if, for a set S, we define dS(u, v) := |1S(i)−1S(j)|, then dS(·, ·) defines a semi-metric
over the set V , because dS is symmetric, dS(v, v) = 0, and the triangle inequality holds. So
we could think about allowing arbitrary semi-metrics in the expression for nsc, and define

LR(G,H) := min
d : V × V → R
d semi-metric

∑
{u,v}∈EG

d(u, v)∑
{u,v}∈EH

d(u, v)
(10.1)

This might seem like such a broad relaxation that there could be graphs on which LR(G,H)
bears no connection to nsc(G,H). Instead, we will prove the fairly good estimate

LR(G,H) ≤ nsc(G,H) ≤ O(log |V |) · LR(G,H) (10.2)
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The value LR(G,H) and an optimal d(·, ·) can be computed in polynomial time by solving
the following linear program

minimize
∑
{u,v}∈EG

du,v
subject to ∑

{u,v}∈EH
du,v = 1

du,v ≤ du,z + dz,v ∀u, v, z ∈ V
du,v ≥ 0 ∀u, v ∈ V

(10.3)

that has a variable du,v for every unordered pair of distinct vertices {u, v}. Clearly, every
solution to the linear program (10.3) is also a solution to the right-hand side of the definition
(10.1) of the Leighton-Rao parameter, with the same cost. Also every semi-metric can be
normalized so that

∑
{u,v}∈EH

d(u, v) = 1 by multiplying every distance by a fixed constant,

and the normalization does not change the value of the right-hand side of (10.1); after the
normalization, the semimetric is a feasible solution to the linear program (10.3), with the
same cost.

10.4 An L1 Relaxation of Sparsest Cut

In the Leighton-Rao relaxation, we relax distance functions of the form d(i, j) = |1S(i) −
1S(j)| to completely arbitrary distance functions. Let us consider an intermediate relax-
ation, in which we allow distance functions that can be realized by an embedding of the
vertices in an `1 space.

Recall that, for a vector x ∈ Rn, its `1 norm is defined as ||x||1 :=
∑

i |xi|, and that this
norm makes Rn into a metric space with the `1 distance function

||x− y||1 =
∑
i

|xi − yi|

The distance function d(u, v) = |1S(u) − 1S(v)| is an example of a distance function that
can be realized by mapping each vertex to a real vector, and then defining the distance
between two vertices as the `1 norm of the respective vectors. Of course it is an extremely
restrictive special case, in which the dimension of the vectors is one, and in which every
vertex is actually mapping to either zero or one. Let us consider the relaxation of sparsest
cut to arbitrary `1 mappings, and define

`1nsc(G,H) := inf
m,f :V→Rm

∑
{u,v}∈EG

||f(u)− f(v)||1∑
{u,v}∈EH

||f(u)− f(v)||1

This may seem like another very broad relaxation of sparsest cut, whose optimum might
be much smaller than the sparsest cut optimum. The following theorem shows that this is
not the case.
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Theorem 10.1 For every graphs G,H, nsc(G,H) = `1nsc(G,H).

Furthermore, there is a polynomial time algorithm that, given a mapping f : V → Rm, finds
a cut S such that∑

{u,v}∈EG
|1S(u)− 1S(v)|∑

{u,v}∈EH
|1S(u)− 1S(v)|

≤
∑
{u,v}∈EG

||f(u)− f(v)||1∑
{u,v}∈EH

||f(u)− f(v)||1
(10.4)

Proof: We use ideas that have already come up in the proof the difficult direction of
Cheeger’s inequality. First, recall that for every nonnegative reals a1, . . . , am and positive
reals b1, . . . , bm we have

a1 + · · · am
b1 + · · · bm

≥ min
i

ai
bi

(10.5)

as can be seen by noting that

∑
j

aj =
∑
j

bj ·
aj
bj
≥
(

min
i

ai
bi

)
·
∑
j

bj

Let fi(v) be the i-th coordinate of the vector f(v), thus f(v) = (f1(v), . . . , fm(v)). Then
we can decompose the right-hand side of (10.4) by coordinates, and write∑

{u,v}∈EG
||f(u)− f(v)||1∑

{u,v}∈EH
||f(u)− f(v)||1

=

∑
i

∑
{u,v}∈EG

|fi(u)− fi(v)|∑
i

∑
{u,v}∈EH

|fi(u)− fi(v)|

≥ min
i

∑
{u,v}∈EG

|fi(u)− fi(v)|∑
{u,v}∈EH

|fi(u)− fi(v)|

This already shows that, in the definition of φ′, we can map, with no loss of generality, to
1-dimensional `1 spaces.

Let i∗ be the coordinate that achieves the minimum above. Because the cost function is
invariant under the shifts and scalings (that is, the cost of a function x→ f(x) is the same
as the cost of x → af(x) + b for every two constants a 6= 0 and b) there is a function
g : V → R such that g has the same cost function as fi∗ and it has a unit-length range
maxv g(v)−minv g(v) = 1.

Let us now pick a threshold t uniformly at random from the interval [minv g(v),maxv g(v)],
and define the random variables

St := {v : g(v) ≤ t}

We observe that for every pairs of vertices u, v we have
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E |1St(u)− 1St(v)| = |g(u)− g(v)|

and so we get ∑
{u,v}∈EG

||f(u)− f(v)||1∑
{u,v}∈EH

||f(u)− f(v)||1

≥
∑
{u,v}∈EG

|g(u)− g(v)|∑
{u,v}∈EH

|g(u)− g(v)|

=
E
∑
{u,v}∈EG

|1St(u)− 1St(v)|
E
∑
{u,v}∈EH

|1St(u)− 1St(v)|

Finally, by an application of (10.5), we see that there must be a set S among the possible
values of St such that (10.4) holds.

Notice that the proof was completely constructive: we simply took the coordinate fi∗ of f
with the lowest cost function, and then the “threshold cut” given by fi∗ with the smallest
sparsity. �

10.5 A Theorem of Bourgain

We will derive our main result (10.2) from the L1 “rounding” process of the previous section,
and from the following theorem of Bourgain (the efficiency considerations are due to Linial,
London and Rabinovich).

Theorem 10.2 (Bourgain) Let d : V × V → R be a semimetric defined over a finite set
V . Then there exists a mapping f : V → Rm such that, for every two elements u, v ∈ V ,

||f(u)− f(v)||1 ≤ d(u, v) ≤ ||f(u)− f(v)||1 · c · log |V |

where c is an absolute constant. Given d, the mapping f can be found with high probability
in randomized polynomial time in |V |.

To see that the above theorem of Bourgain implies (10.2), consider a graph G, and let d be
the optimal solution of the Leighton-Rao relaxation of the sparsest cut problem on G, and
let f : V → R be a mapping as in Bourgain’s theorem applied to d. Then

LR(G,H) =

∑
{u,v}∈EG

d(u, v)∑
{u,v}∈EH

d(u, v)

≥
∑
{u,v}∈EG

||f(u)− f(v)||1
c · log |V | ·

∑
{u,v}∈EH

||f(u)− f(v)||1
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≥ 1

c · log |V |
· nsc(G,H)
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Chapter 11

Proof of Bourgain’s Theorem

In which we prove Bourgain’s theorem.

Today we prove the following theorem.

Theorem 11.1 (Bourgain) Let d : V × V → R be a semimetric defined over a finite set
V . Then there exists a mapping F : V → Rm such that, for every two elements u, v ∈ R,

||F (u)− F (v)||1 ≤ d(u, v) ≤ ||F (u)− F (v)||1 · c · log |V |

where c is an absolute constant. Given d, the mapping F can be found with high probability
in randomized polynomial time in |V |.

Together with the results that we proved in the last lecture, this implies that an optimal
solution to the Leighton-Rao relaxation can be rounded to an O(log n)-approximate solution
to the sparsest cut problem. This was the best known approximation algorithm for sparsest
cut for 15 years, until the Arora-Rao-Vazirani algorithm, which will be our next topic.

The theorem has a rather short proof, but there is an element of “magic” to it. We will
discuss several examples and we will see what approaches are suggested by the examples.
At the end of the discussion, we will see the final proof as, hopefully, the “natural” outcome
of the study of such examples and failed attempts.

11.1 Preliminary and Motivating Examples

A first observation is that embeddings of finite sets of points into L1 can be equivalently
characterized as probabilistic embeddings into the real line.
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Fact 11.2 For every finite set V , dimension m, and mapping F : V → Rm, there is a
finitely-supported probability distribution D over functions f : V → R such that for every
two points u, v ∈ V :

E
f∼D
|f(u)− f(v)| = ||F (u)− F (v)||1

Conversely, for every finite set V and finitely supported distribution D over functions f :
V → R, there is a dimension m and a mapping F : V → Rm such that

E
f∼D
|f(u)− f(v)| = ||F (u)− F (v)||1

Proof: For the first claim, we write Fi(v) for the i-th coordinate of F (v), that is F (v) =
(F1(v), . . . , Fm(v)), and we define D to be the uniform distribution over the m functions of
the form x→ m · Fi(x).

For the second claim, if the support of D is the set of functions {f1, . . . , fm}, where function
fi has probability pi, then we define F (v) := (p1f1(v), . . . , pmfm(v)). �

It will be easier to reason about probabilistic mappings into the line, so we will switch to
the latter setting from now on.

Our task is to associate a number to every point v, and the information that we have about
v is the list of distances {d(u, v)}. Probably the first idea that comes to mind is to pick
a random reference vertex r ∈ V , and work with the mapping v → d(r, v), possibly scaled
by a multiplicative constant. (Equivalently, we can think about the deterministic mapping
V → R|V |, in which the vertex v is mapped to the sequence (d(u1, v), . . . , d(un, v), for some
enumeration u1, . . . , un of the elements of V .)

This works in certain simple cases.

Example 11.3 (Cycle) Suppose that d(·, ·) is the shortest-path metric on a cycle, we can
see that, for every two points on the cycle, Er∈V |d(r, u)−d(r, v)| is within a constant factor
of their distance d(u, v). (Try proving it rigorously!)

Example 11.4 (Simplex) Suppose that d(u, v) = 1 for every u 6= v, and d(u, u) = 0.
Then, for every u 6= v, we have Er∈V |d(r, u)− d(r, v)| = P[r = u ∨ r = v] = 2/n, so, up to
scaling, the mapping incurs no error at all.

But there are also simple examples in which this works very badly.

Example 11.5 (1-2 Metric) Suppose that for every u 6= v we have d(u, v) ∈ {1, 2} (any
distance function satisfying this property is always a metric) and that, in particular, there
is a special vertex z at distance 2 from all other vertices, while all other vertices are at
distance 1 from each other. Then, for vertices u, v both different from z we have, as before
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E[|d(r, u)− d(r, v)|] =
2

n

but for every v different from z we have

E[|d(r, z)− d(r, v)|] =
n− 2

n
· |2− 1|+ 1

n
· |2− 0|+ 1

n
· |0− 2| = 1 +

2

n

and so our error is going to be Ω(n) instead of the O(log n) that we are trying to establish.

Maybe the next simplest idea is that we should pick at random several reference points
r1, . . . , rk. But how do we combine the information d(r1, u), . . . , d(rk, u) into a single number
to associate to u? If we just take the sum of the distances, we are back to the case of sampling
a single reference point. (We are just scaling up the expectation by a factor of k.)

The next simplest way to combine the information is to take either the maximum or the
minimum. If we take the minimum, we see that we have the very nice property that
we immediately guarantee that our distances in the L1 embedding are no bigger than the
original distances, so that it “only” remains to prove that the distances don’t get compressed
too much.

Fact 11.6 Let d : V ×V → R be a semimetric and A ⊆ V be a non-empty subset of points.
Define fA : V → R as

fA(v) := min
r∈A

d(r, v)

Then, for every two points u, v we have

|fA(u)− fA(v)| ≤ d(u, v)

Proof: Let a be the point such that d(a, u) = fA(u) and b be the point such that d(b, v) =
fA(v). (It’s possible that a = b.) Then

fA(u) = d(a, u) ≥ d(v, a)− d(u, v) ≥ d(v, b)− d(u, v) = fA(v)− d(u, v)

and, similarly,

fA(v) = d(b, v) ≥ d(u, b)− d(u, v) ≥ d(u, a)− d(u, v) = fA(u)− d(u, v)

�

Is there a way to sample a set A = {r1, . . . , rk} such that, for every two points u, v, the
expectation E |fA(u) − fA(v)| is not too much smaller than d(u, v)? How large should the
set A be?

Example 11.7 (1-2 Metric Again) Suppose that for every u 6= v we have d(u, v) ∈
{1, 2}, and that we pick a subset A ⊆ V uniformly at random, that is, each event r ∈ A has
probability 1/2 and the events are mutually independent.
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Then for every u 6= v:

1

4
· d(u, v) ≤ |E |fA(u)− fA(v)| ≤ d(u, v)

because with probability 1/2 the set A contains exactly one of the elements u, v, and condi-
tioned on that event we have |fA(u) − fA(v)| ≥ 1 (because one of fA(u), fA(v) is zero and
the other is at least one), which is at least d(u, v)/2.

If we pick A uniformly at random, however, we incur an Ω(n) distortion in the case of the
shortest path metric on the cycle. In all the examples seen so far, we can achieve constant
distortion if we “mix” the distribution in which A is a random set of size 1 and the one in
which A is a chosen uniformly at random among all sets, say by sampling from the former
probability with probability 1/2 and from the latter with probability 1/2.

Example 11.8 (Far-Away Clusters) Suppose now that d(·, ·) has the following struc-
ture: V is partitioned into clusters B1, . . . , Bk, where |Bi| = i (so k ≈

√
2n), and we have

d(u, v) = 1 for vertices in the same cluster, and d(u, v) = n for vertices in different clusters.

If u, v are in the same cluster, then d(u, v) = 1 and

E |fA(u)− fA(v)| = P[A contains exactly one of u, v]

If u, v are in different clusters Bi, Bj, then d(u, v) = n and

E |fA(u)− fA(v)| ≈ nP[A intersects exactly one of Bi, Bj ]

If we want to stick to this approach of picking a set A of reference elements according to
a certain distribution, and then defining the map fA(v) := minr∈A d(r, v), then the set A
must have the property that for every two sets S, T , there is at least a probability p that
A intersects exactly one of S, T , and we would like p to be as large as possible, because the
distortion caused by the mapping will be at least 1/p.

This suggest the following distribution D:

1. Sample t uniformly at random in {0, . . . , log2 n}

2. Sample A ⊆ V by selecting each v ∈ V , independently, to be in A with probability
2−t and to be in V −A with probability 1− 2−t.

This distribution guarantees the above property with p = 1/O(log n).

Indeed, the above distribution guarantees a distortion at most O(log n) in all the examples
encountered so far, including the tricky example of the clusters of different size. In each
example, in fact, we can prove the following claim: for every two vertices u, v, there is a
scale t, such that conditioned on that scale being chosen, the expectation of |fA(u), fA(v)|
is at least a constant times d(u, v). We could try to prove Bourgain’s theorem by showing
that this is true in every semimetric.
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Let us call Dt the conditional distribution of D conditioned on the choice of a scale t. We
would like to prove that for every semimetric d(·, ·) and every two points u, v there is a scale
t such that

E
A∼Dt

|fA(u)− fA(v)| ≥ Ω(d(u, v))

which, recalling that |fA(u)− fA(v)| ≤ d(u, v) for every set A, is equivalent to arguing that

P
A∼Dt

[|fA(u)− fA(v)| ≥ Ω(d(u, v))] ≥ Ω(1)

For this to be true, there must be distances d1, d2 such that d1 − d2 ≥ Ω(d(u, v)) and such
that, with constant probability according to Dt, we have fA(u) ≥ d1 and fA(v) ≤ d2 (or
vice-versa). For this to happen, there must be a constant probability that A avoids the set
{r : d(u, r) < d1} and intersects the set {r : d(v, r) ≤ d2}. For this to happen, both sets
must have size ≈ 2t.

This means that if we want to make this “at least one good scale for every pair of points”
argument work, we need to show that for every two vertices u, v there is a “large” distance
d1 and a “small” distance d2 (whose difference is a constant times d(u, v)) such that a
large-radius ball around one of the vertices and a small-radius ball around the other vertex
contain roughly the same number of elements of V .

Consider, however, the following example.

Example 11.9 (Tree) Consider a complete binary tree, and the shortest-path metric d(·, ·)
in the tree. Take any two vertices u and v at distance 1

2 log n. If we look at the ball of radius
d1 around u and the ball of radius d2 = d1 + ε log n around v, we see that the former has
2d1 points in it, and the latter has 2d1 · nε points: it is clearly hopeless to have constant
probability of hitting the former and of missing the latter.

For every t < 1
2 log n, however, we have

E
A∼Dt

[|fA(u)− fA(v)|] ≥ Ω(1)

because there is a constant probability of hitting one of the 2t+1 points at distance ≤ t from
u, so that fA(u) ≤ t and also a constant probability of missing the 2t+2 points at distance
≥ t + 1 from v, in which case fA(v) ≥ t + 1. This is still good, because averaging over all
scales we still get

E
A∼D

[|fA(u)− fA(v)|] ≥ Ω(1) =
1

O(log n)
· d(u, v)

but this example shows that the analysis cannot be restricted to one good scale but, in some
cases, we have to take into account the contribution to the expectation coming from all the
scales.

In the above example, the only way to get a ball around u and a ball around v with
approximately the same number of points is to get balls of roughly the same radius. No
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scale could then give a large contribution to the expectation EA∼D[|fA(u)− fA(v)|]; every
scale, however, gave a noticeable contribution, and adding them up we had a bounded
distortion. The above example will be the template for the full proof, which will do an
“amortized analysis” of the contribution to the expectation coming from each scale t, by
looking at the radii that define a ball around u and a ball around v with approximately 2t

elements.

11.2 The Proof of Bourgain’s Theorem

Given Fact 11.2 and Fact 11.6, proving Bourgain’s theorem reduces to proving the following
theorem.

Theorem 11.10 For a finite set of points V , consider the distribution D over subsets of
V sampled by uniformly picking a scale t ∈ {0, . . . , log2 |V |} and then picking independently
each v ∈ V to be in A with probability 2−t. Let d : V × V → R be a semimetric. Then for
every u, v ∈ V ,

E
A∼D

[|fA(u)− fA(v)|] ≥ 1

c log2 |V |
· d(u, v)

where c is an absolute constant.

Proof: For each t, let rut be the distance from u to the 2t-th closest point to u (counting
u). That is,

|{w : d(u,w) < rut}| < 2t

and
|{w : d(u,w) ≤ rut}| ≥ 2t

and define rvt similarly. Let t∗ be the scale such that both rut∗ and rvt∗ are smaller than
d(u, v)/3, but at least one of rut∗+1 or rvt∗+1 are ≥ d(u, v)/3.

Define

ru′t := min{rut, d(u, v)/3}

and similarly
rv′t := min{rvt, d(u, v)/3}

We claim that there is an absolute constant c such that for every scale t ∈ {0, . . . , t∗}, we
have

E
A∼Dt

|fA(u)− fA(v)| ≥ c · (ru′t+1 + rv′t+1 − ru′t − rv′t) (11.1)
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We prove the claim by showing that there are two disjoint events, each happening with
probability ≥ c, such that in one event |fA(u)−fA(v)| ≥ ru′t+1−rv′t, and in the other event
|fA(u)− fA(v)| ≥ rv′t+1 − ru′t.

1. The first event is that A avoids the set {z : d(u, z) < ru′t+1} and intersects the set
{z : d(v, z) ≤ rv′t}. The former set has size < 2t+1, and the latter set has size ≤ 2t;
the sets are disjoint because we are looking at balls or radius ≤ d(u, v)/3 around u
and v; so the event happens with a probability that is at least an absolute constant.
When the event happens,

|fA(u)− fA(v)| ≥ fA(u)− fA(v) ≥ ru′t+1 − rv′t

2. The second event is that A avoids the set {z : d(v, z) < rv′t+1} and intersects the set
{z : d(u, z) ≤ ru′t}. The former set has size < 2t+1, and the latter set has size ≤ 2t;
the sets are disjoint because we are looking at balls or radius ≤ d(u, v)/3 around u
and v; so the event happens with a probability that is at least an absolute constant.
When the event happens,

|fA(u)− fA(v)| ≥ fA(v)− fA(u) ≥ rv′t+1 − ru′t

So we have established (11.1). Averaging over all scales, we have

E
A∼D

|fA(u)− fA(v)|

≥ c

1 + log2 n
· (ru′t∗+1 + rv′t∗+1 − ru′0 − rv′0)

≥ c

1 + log2 n
· d(u, v)

3

�

There is one remaining point to address. In Fact 11.2, we proved that a distribution over
embeddings on the line can be turned into an L1 embeddings, in which the number of
dimensions is equal to the size of the support of the distribution. In our proof, we have
used a distribution that ranges over 2|V | possible functions, so this would give rise to an
embedding that uses a superpolynomial number of dimensions.

To fix this remaining problem, we sample m = O(log3 |V |) sets A1, . . . , Am and we define
the embedding f(u) := (m−1 · fA1(u), . . . ,m−1 · fAm(u)). It remains to prove that this
randomized mapping has low distortion with high probability, which is an immediate con-
sequence of the Chernoff bounds. Specifically, we use the following form of the Chernoff
bound:

Lemma 11.11 Let Z1, . . . , Zm be independent nonnegative random variables such that,
with probability 1, 0 ≤ Zi ≤M . Let Z := 1

m(Z1 + · · ·+ Zm). Then
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P[EZ − Z ≥ t] ≤ e−2mt2/M2

Let us look at any two vertices u, v. Clearly, for every choice of A1, . . . , Am, we have
||f(u)− f(v)||1 ≤ d(u, v) so it remains to prove a lower bound to their L1 distance. Let us
call Z the random variable denoting their L1 distance, that is

Z := ||f(u)− f(v)|| =
m∑
i=1

1

m
|fAi(u)− fAi(v)|

We can write Z = 1
m · (Z1 + · · ·+ Zm) where Zi := |fAi(u)− fAi(v)|, so that Z is the sum

of identically distributed nonnegative random variables, such that

Zi ≤ d(u, v)

EZi ≥
c

log |V |
d(u, v)

Applying the Chernoff bound with M = d(u, v) and t = c
2 log |V |d(u, v), we have

P
[
Z ≤ c

2 log |V |
d(u, v)

]
≤ P

[
Z ≤ EZ −

c

2 log |V |
d(u, v)

]
≤ 2−2mc2/(2 log |V |)2

which is, say, ≤ 1/|V |3 if we choose m = c′ log3 |V | for an absolute constant c′.

By taking a union bound over all pairs of vertices,

P
[
∀u, v. ||f(u)− f(v)||1 ≥

c

2 log |V |
· d(u, v)

]
≥ 1− 1

|V |
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Chapter 12

ARV

In which we introduce semi-definite programming and a semi-definite programming relax-
ation of sparsest cut, and we reduce its analysis to a key lemma that we will prove in the
next lecture(s)

12.1 The Goemans-Linial Relaxation

Recall that, for two undirected graphs G,H, the sparsest cut problem is to optimize

nsc(G,H) := min
S⊆V

∑
{u,v}∈EG

|1S(u)− 1S(v)|∑
{u,v}∈EH

|1S(u)− 1S(v)|

and the Leighton-Rao relaxation is obtained by noting that if we define d(u, v) := |1S(u)−
1S(v)| then d(·, ·) is a semimetric over V , meaning that the following quantity is a relaxation
of (G,H):

LR(G,H) = min
d : V × V → R
d semimetric

∑
{u,v}∈EG

d(u, v)∑
{u,v}∈EH

d(u, v)

If G is r-regular, H is a clique, and 0 = λ1 ≤ λ2 ≤ · · · ≥ λn are the eigenvalues of the
normalized Laplacian of G, then

r

n
λ2 = min

f :V→R

∑
{u,v}∈EG

|f(u)− f(v)|2∑
{u,v}∈EKn

|f(u)− f(v)|2
(12.1)
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which is a relaxation of nsc(G,Kn), because, for every S, every u and every v, |1S(u) −
1S(v)| = |1S(u)− 1S(v)|2.

We note that if we further relax (12.1) by allowing V to be mapped into a higher dimension
space Rm instead of R, and we replace | · − · | by || · − · ||2, the optimum remains the same.

Fact 12.1

λ2 = inf
m,F :V→Rm

∑
{u,v}∈EG

||F (u)− F (v)||2∑
{u,v}∈EKn

||F (u)− F (v)||2

Proof: For every F : V → Rm, if we write F (v) = (f1(v), . . . , fn(v)), we have

∑
{u,v}∈EG

||F (u)− F (v)||2∑
{u,v}∈EKn

||F (u)− F (v)||2

=

∑
i

∑
{u,v}∈EG

(fi(u)− fi(v))2∑
i

∑
{u,v}∈EKn

(fi(u)− fi(v))2

≥ min
i=1,...,m

∑
{u,v}∈EG

(fi(u)− fi(v))2∑
{u,v}∈EKn

(fi(u)− fi(v))2

≥ λ2

�

The above observations give the following comparison between the Leighton-Rao relaxation
and the spectral relaxation: both are obtained by replacing |1S(u)−1S(v)| with a “distance
function” d(u, v); in the Leighton-Rao relaxation, d(u, v) is constrained to satisfy the triangle
inequality; in the spectral relaxation, d(u, v) is constrained to be the square of the Euclidean
distance between F (u) and F (v) for some mapping F : V → Rm.

The Arora-Rao-Vazirani relaxation is obtained by enforcing both conditions, that is, by
considering distance functions d(u, v) that satisfy the triangle inequality and can be realized
of ||F (u)− F (v)||2 for some mapping F : V → Rm.

Definition 12.2 A semimetric d : V → V → R is called of negative type if there is a
dimension m and a mapping F : V → Rm such that d(u, v) = ||F (u) − F (v)||2 for every
u, v ∈ V .

With the above definition, we can formulate the Goemans-Linial relaxation as

ARV (G,H) := min
d : V × V → R

d semimetric of negative type

∑
{u,v}∈EG

d(u, v)∑
{u,v}∈EH

d(u, v)
(12.2)
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Remark 12.3 The relaxation (12.2) was first proposed by Goemans and Linial. Arora,
Rao and Vazirani were the first to prove that it achieves an approximation guarantee which
is better than the approximation guarantee of the Leighton-Rao relaxation.

We have, by definition,

nsc(G,H) ≤ ARV (G,H) ≤ LR(G,H)

and, when H is a clique and G is r-regular,

nsc(G,Kn) ≤ ARV (G,Kn) ≤ r

n
λ2(G)

and so the approximation results that we have proved for λ2 and LR apply to ARV . For
every graphs G and H:

ARV (G,H) ≤ O(log |V |) · nsc(G,H)

and for every r-regular graph G

n

r
ARV (G,Kn) ≤

√
8
n

r
· nsc(G,Kn)

Interestingly, known examples of graphs for which LR and λ2 give poor approximation are
complementary. When H is a clique, if G is a cycle, then r

nλ2 is a poor approximation
of nsc(G,Kn), but LR(G,Kn) is a good approximation of nsc(G,Kn); if G is a constant-
degree expander then LR(G,Kn) is a poor approximation of nsc(G,Kn), but r

nλ2 is a good
approximation.

When Goemans and Linial (separately) proposed to study the relaxation (12.2), they con-
jectured that it would always provide a constant-factor approximation of nsc(G,H). Un-
fortunately, the conjecture turned out to be false, but Arora, Rao and Vazirani were able
to prove that (12.2) does provide a strictly better approximation than the Leighton-Rao
relaxation. In the next lectures, we will present parts of the proof of the following results.

Theorem 12.4 There is a constant c such that, for every graph G = (V,E),

nsc(G,Kn) ≤ c ·
√

log |V | ·ARV (G,Kn)

Theorem 12.5 There is a constant c such that, for every graphs G = (V,EG), H =
(V,EH),

nsc(G,H) ≤ c ·
√

log |V | · log log |V | ·ARV (G,H)

Theorem 12.6 There is a constant c and an infinite family of graphs Gn = (Vn, En) such
that

nsc(Gn,Kn) ≥ c · log log |Vn| ·ARV (Gn,Kn)
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Theorem 12.7 There are families of graphs Gn = (Vn, EGn) and Hn(Vn, EHn) such that,
for every ε > 0 and every sufficiently larger n,

ARV (Gn,Kn) ≥ (log |V |)
1
2
−ε · nsc(Gn,Kn)

12.2 Polynomial Time Solvability

In this section we show that the Ellipsoid algorithm can compute ARV (G,H) in polynomial
time.

Definition 12.8 If C ⊆ Rm is a set, then a separation oracle for C is a procedure that, on
input x ∈ Rm,

• If x ∈ C, outputs “yes”

• If x 6∈ C, outputs coefficients a1, . . . , am, b such that∑
i

xiai < b

but, for every z ∈ C, ∑
i

ziai ≥ b

Note that a set can have a separation oracle only if it is convex. Under certain addi-
tional mild conditions, if C has a polynomial time computable separation oracle, then the
optimization problem

minimize
∑

i c
Tx

subject to
Ax ≥ b
x ∈ C

is solvable in polynomial time using the Ellipsoid Algorithm.

It remains to see how to put the Arora-Rao-Vazirani relaxation into the above form.

Recall that a matrix X ∈ Rn×n is positive semidefinite if all its eigenvalues are nonnegative.
We will use the set of all n×n positive semidefinite matrices as our set C (thinking of them
as n2-dimensional vectors). If we think of two matrices M,M ′ ∈ Rn×n as n2-dimensional
vectors, then their “inner product” is

M •M ′ :=
∑
i,j

Mi,j ·M ′i,j

Lemma 12.9 The set of n× n positive semidefinite matrices has a separation oracle com-
putable in time polynomial in n.
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Proof: Given a symmetric matrix X, its smallest eigenvalue is

min
z∈Rn, ||z||=1

zTXz

the vector achieving the minimum is a corresponding eigenvector, and both the smallest
eigenvalue and the corresponding eigenvector can be computed in polynomial time.

If we find that the smallest eigenvalue of X is non-negative, then we answer “yes.” Other-
wise, if z is an eigenvector of the smallest eigenvalue we output the matrix A = zT z. We
see that we have

A •X = zTXz < 0

but that, for every positive semidefinite matrix M , we have

A •M = zTMz ≥ 0

�

This implies that any optimization problem of the following form can be solved in polynomial
time

minimize C •X
subject to

A1 •X ≥ b1
· · ·
Am •X ≥ bm
X � 0

(12.3)

where C,A1, . . . , Am are square matrices of coefficients, b1, . . . , bm are scalars, and X is a
square matrix of variables. An optimization problem like the one above is called a semidef-
inite program.

It remains to see how to cast the Arora-Rao-Vazirani relaxation as a semidefinite program.

Lemma 12.10 For a symmetric matrix M ∈ Rn×n, the following properties are equivalent:

1. M is positive semidefinite;

2. there are vectors x1, . . . ,xn ∈ Rd such that, for all i, j, Mi,j = 〈xi,xj〉;

3. for every vector z ∈ Rn, zTMz ≥ 0

Proof: That (1) and (3) are equivalent follows from the characterization of the smallest
eigenvalue of M as the minimum of zTMz over all unit vectors z.
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To see that (2) ⇒ (3), suppose that vectors x1, . . . ,xn exist as asserted in (2), and let X
be the matrix whose columns are the vectors x1, . . . ,xn, so that XT · X = M . Take any
vector z, and see that

zTMz = zTXTXz = ||Xz||2 ≥ 0

Finally, to see that (1) ⇒ (2), let λ1, . . . , λn be the eigenvalues of M with multiplicities,
and let v1, . . . ,vn be a corresponding orthonormal set of eigenvectors. Then

M =
∑
i

λkvkv
T
k

that is,

Mi,j =
∑
k

λkvk(i)vk(j) = 〈xi,xj〉

if we define x1, . . . ,xn as the vectors such that xi(k) :=
√
λkvk(i). �

This means that the generic semidefinite program (12.4) can be rewritten as an optimization
problem in which the variables are the vectors x1, . . . ,xn as in part (2) of the above lemma.

minimize
∑

i,j Ci,j〈xi,xj〉
subject to ∑

i,j A
1
i,j〈xi,xj〉 ≥ b1

· · ·∑
i,j A

m
i,j〈xi,xj〉 ≥ bm

xi ∈ Rm ∀i ∈ {1, . . . , n}

(12.4)

where the dimension m is itself a variable (although one could fix it, without loss of gen-
erality, to be equal to n). In this view, a semidefinite program is an optimization problem
in which we wish to select n vectors such that their pairwise inner products satisfy certain
linear inequalities, while optimizing a cost function that is linear in their pairwise inner
product.

The square of the Euclidean distance between two vectors is a linear function of inner
products

||x− y||2 = 〈x− y,x− y〉 = 〈x,x〉 − 2〈x,y〉+ 〈y,y〉

and so, in a semidefinite program, we can include expressions that are linear in the pairwise
squared distances (or squared norms) of the vectors. The ARV relaxation can be written
as follows
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minimize
∑
{u,v}∈EG

||xu − xv||2

subject to ∑
{u,v}∈EH

||xu − xv||2 = 1

||xu − xv||2 ≤ ||xu − xw||2 + ||xw − xv||2 ∀u, v, w ∈ V
xu ∈ Rm ∀u ∈ V

and so it is a semidefinite program, and it can be solved in polynomial time.

Remark 12.11 Our discussion of polynomial time solvability glossed over important issues
about numerical precision. To run the Ellipsoid Algorithm one needs, besides the separation
oracle, to be given a ball that is entirely contained in the set of feasible solutions and a ball
that entirely contains the set of feasible solutions, and the running time of the algorithm
is polynomial in the size of the input, polylogarithmic in the ratio of the volumes of the
two balls, and polylogarithmic in the desired amount of precision. At the end, one doesn’t
get an optimal solution, which might not have a finite-precision exact representation, but
an approximation within the desired precision. The algorithm is able to tolerate a bounded
amount of imprecision in the separation oracle, which is an important feature because we
do not have exact algorithms to compute eigenvalues and eigenvectors (the entries in the
eigenvector might not have a finite-precision representation).

The Ellipsoid algorithm is typically not a practical algorithm. Algorithms based on the
interior point method have been adapted to semidefinite programming, and run both in
worst-case polynomial time and in reasonable time in practice.

Arora and Kale have developed an Õ((|V |+ |E|)2/εO(1)) time algorithm to solve the ARV
relaxation within a multiplicative error (1 + ε). The dependence on the error is worse
than that of generic algorithms, which achieve polylogarithmic dependency, but this is not
a problem in this application, because we are going to lose an O(

√
log |V |) factor in the

rounding, so an extra constant factor coming from an approximate solution of the relaxation
is a low-order consideration.

12.3 Rounding when H is a clique

Given the equivalence between the sparsest cut problem and the “L1 relaxation” of sparsest
cut, it will be enough to prove the following result.

Theorem 12.12 (Rounding of ARV) Let G = (V,E) be a graph, and {xv}v∈V be a
feasible solution of the relaxation ARV (G,Kn).

Then there is a mapping f : V → R such that

∑
{u,v}∈E |f(u)− f(v)|∑
{u,v} |f(u)− f(v)|

≤ O(
√

log |V |) ·
∑
{u,v}∈E ||xu − xv||2∑
{u,v} ||xu − xv||2
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As in the rounding of the Leighton-Rao relaxation via Bourgain’s theorem, we will identify
a set S ⊆ V , and define

fS(v) := min
s∈S
||xs − xv||2 (12.5)

Recall that, as we saw in the proof of Bourgain’s embedding theorem, no matter how we
choose the set S we have

|fS(u)− fS(v)| ≤ ||xu − xv||2 (12.6)

where we are not using any facts about || · − · ||2 other than the fact that, for solutions of
the ARV relaxation, it is a distance function that obeys the triangle inequality.

This means that, in order to prove the theorem, we just have to find a set S ⊆ V such that

∑
u,v

|fS(u)− fS(v)| ≥ 1

O(
√

log |V |)
·
∑
u,v

||xu − xv||2 (12.7)

and this is a considerable simplification because the above expression is completely inde-
pendent of the graph! The remaining problem is purely one about geometry.

Recall that if we have a set of vectors {xv}v∈V such that the distance function d(u, v) :=
||xu − xv||2 satisfies the triangle inequality, then we say that d(·, ·) is a (semi-)metric of
negative type.

After these preliminaries observations, our goal is to prove the following theorem.

Theorem 12.13 (Rounding of ARV – Revisited) If d(·, ·) is a semimetric of negative
type over a set V , then there is a set S such that if we define

fS(v) := min
s∈S
{d(s, v)}

we have ∑
u,v

|fS(u)− fS(v)| ≥ 1

O(
√

log |V |)
·
∑
u,v

d(u, v)

Furthermore, the set S can be found in randomized polynomial time with high probability
given a set of vector {xv}v∈V such that d(u, v) = ||xu − xv||2.

Since the statement is scale-invariant, we can restrict ourselves, with no loss of generality,
to the case

∑
u,v d(u, v) = |V |2.

Remark 12.14 Let us discuss some intuition before continuing with the proof.

As our experience proving Bourgain’s embedding theorem shows us, it is rather difficult to pick
sets such that |fS(u) − fS(v)| is not much smaller than d(u, v). Here we have a somewhat
simpler case to solve because we are not trying to preserve all distances, but only the average
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pairwise distance. A simple observation is that if we find a set S which contains Ω(|V |) elements
and such that Ω(|V |) elements of V are at distance Ω(δ) from S, then we immediately get∑

u,v |fS(u)− fS(v)| ≥ Ω(δ|V |2), because there will be Ω(|V |2) pairs u, v such that fS(u) = 0

and fS(v) ≥ δ. In particular, if we could find such a set with δ = 1/O(
√

log |V |) then we
would be done. Unfortunately this is too much to ask for in general, because we always have
|fS(u) − fS(v)| ≤ d(u, v), which means that if we want

∑
u,v |fS(u) − fS(v)| to have Ω(V 2)

noticeably large terms we must also have that d(u, v) is noticeably large for Ω(|V |2) pairs of
points, which is not always true.

There is, however, the following argument, which goes back to Leighton and Rao: either there
are Ω(|V |) points concentrated in a ball whose radius is a quarter (say) of the average pairwise
distance, and then we can use that ball to get an `1 mapping with only constant error; or there
are Ω(|V |) points in a ball of radius twice the average pairwise distance, such that the pairwise
distances of the points in the ball account for a constant fraction of all pairwise distances. In
particular, the sum of pairwise distances includes Ω(|V |2) terms which are Ω(1).

After we do this reduction and some scaling, we are left with the task of proving the following
theorem: suppose we are given an n-point negative type metric in which the points are contained
in a ball of radius 1 and are such that the sum of pairwise distances is Ω(n2); then there is a subset
S of size Ω(n) such that there are Ω(n) points whose distance from the set is 1/O(

√
log n). This

theorem is the main result of the Arora-Rao-Vazirani paper. (Strictly speaking, this form of the
theorem was proved later by Lee – Arora, Rao and Vazirani had a slightly weaker formulation.)

We begin by considering the case in which a constant fraction of the points are concentrated
in a small ball.

Definition 12.15 (Ball) For a point z ∈ V and a radius r > 0, the ball of radius r and
center z is the set

B(z, r) := {v : d(z, v) ≤ r}

Lemma 12.16 For every vertex z, if we define S := B(z, 1/4), then

∑
u,v

|fS(u)− fS(v)| ≥ |S|
2|V |

∑
u,v

d(u, v)

Proof: Our first calculation is to show that the typical value of fS(u) is rather large. We
note that for every two vertices u and v, if we call a a closest vertex in S to u, and b a
closest vertex to v in S, we have

d(u, v) ≤ d(u, a) + d(a, z) + d(z, b) + d(b, v)

≤ fS(u) + fS(v) +
1

2

and so
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|V |2 =
∑
u,v

d(u, v) ≤ 2|V | ·
∑
v

fS(v) +
|V |2

2

that is,

∑
v

fS(v) ≥ |V |
2

Now we can get a lower bound to the sum of `1 distances given by the embedding fS(·).

∑
u,v

|fS(u)− fS(v)|

≥
∑

u∈S,v∈V
|fS(v)|

= |S|
∑
v

fS(v)

≥ 1

2
|S| · |V |

�

This means that if there is a vertex z such that |B(z, 1/4)| = Ω(|V |), or even |B(z, 1/4)| =
Ω(|V |/

√
log |V |), then we are done.

Otherwise, we will find a set of Ω(|V |) vertices such that their average pairwise distances
are within a constant factor of their maximum pairwise distances, and then we will work on
finding an embedding for such a set of points. (The condition that the average distance is a
constant fraction of the maximal distance will be very helpful in subsequent calculations.)

Lemma 12.17 Suppose that for every vertex z we have |B(z, 1/4)| ≤ |V |/4. Then there is
a vertex w such that, if we set S = B(w, 2), we have

• |S| ≥ 1
2 · |V |

•
∑

u,v∈S d(u, v) ≥ 1
8 |S|

2

Proof: Let w be a vertex that maximizes |B(w, 2)|; then |B(w, 2)| ≥ |V |/2, because if we
had |B(u, 2)| < |V |/2 for every vertex u, then we would have

∑
u,v

d(u, v) >
∑
u

2 · (|V −B(u, 2)|) > |V |2

Regarding the sum of pairwise distances of elements of S, we have∑
u,v∈S

d(u, v) >
∑
u∈S

1

4
(|S −B(u, 1/4)|) ≥ |S| · 1

4
· |S|

2
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The proof of the main theorem now reduces to proving the following geometric fact.

Lemma 12.18 (ARV Main Lemma) Let d be a negative-type metric over a set V such
that the points are contained in a unit ball and have constant average distance, that is,

• there is a vertex z such that d(v, z) ≤ 1 for every v ∈ V

•
∑

u,v∈V d(u, v) ≥ c · |V |2

Then there are sets S, T ⊆ V such that

• |S|, |T | ≥ Ω(|V |);

• for every u ∈ S and every v ∈ S, d(u, v) ≥ 1/O(
√

log |V |)

where the multiplicative factors hidden in the O(·) and Ω(·) notations depend only on c.

Indeed, applying the ARV Main Lemma to 1
2d(u, v) tells us that there are subsets S, T of

B(z, 2), both of size Ω(|B(z, 2)|) = Ω(n) such that d(u, v) ≥ 1/O(
√

log n) for every u ∈ S
and v ∈ T . If we consider the Frechet embedding fS , we have

∑
{u,v}

|fS(u)− fS(v)| ≥
∑

u∈S,v∈T
|fS(u)− fS(v)|

≥ |S| · |T | · 1

O(
√

log n)

≥ n2 · 1

O(
√

log n)

=
1

O(
√

log n)
·
∑
{u,v}

d(u, v)

It remains the prove the ARV Main Lemma.
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Chapter 13

ARV Analysis

In which we begin the analysis of the ARV rounding algorithm

We want to prove

Lemma 13.1 (ARV Main Lemma) Let d be a negative-type metric over a set V such
that the points are contained in a unit ball and have constant average distance, that is,

• there is a vertex z such that d(v, z) ≤ 1 for every v ∈ V

•
∑

u,v∈V d(u, v) ≥ c · |V |2

Then there are sets S, T ⊆ V such that

• |S|, |T | ≥ Ω(|V |);

• for every u ∈ S and every v ∈ T , d(u, v) ≥ 1/O(
√

log |V |)

where the multiplicative factors hidden in the O(·) and Ω(·) notations depend only on c.

In this lecture, we will show how to reduce the ARV Main Lemma to a statement of the
following form: if {xv}v∈V is a set of vectors such that the metric d(·, ·) in the ARV Main
Lemma can be written as d(u, v) = ||xu−xv||2, and g is a random Gaussian vectors, and if
` is such that with Ω(1) probability, there are Ω(n) disjoint pairs u, v such that d(u, v) < `
and |〈g,xu〉 − 〈g,xv〉| ≥ Ω(1), then ` ≥ Ω(1/

√
log n). We will then prove such a statement

in the next lecture.
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13.1 Bottlenecks

Before beginning with the proof, it will be useful to see that certain variations of the ARV
Main Lemma are false, and that we must use the assumptions of the lemma in a certain
way in order to be able to prove it.

For example, consider the variation of the lemma in which d(·, ·) is an arbitrary semi-metric,
rather than being of negative type. We have the following counterexample.

Fact 13.2 For every n, there is a metric d(·, ·) over V = {1, . . . , n} such that

• d(i, j) ≤ 1 for all i, j

•
∑

i,j d(i, j) ≥ Ω(n2)

• For every subsets S, T of size Ω(n) we have

min
i∈S,j∈T

d(i, j) ≤ O
(

1

log n

)
We will not provide a full proof but here is a sketch: consider a family Gn = ([n], En) of
constant-degree graphs of constant edge expansion. (We will see later in the course that
such a family exists.) Consider the shortest-path distance dSP (·, ·) on [n]. We have:

• For every pair i, j, dSP (i, j) ≤ O(log n), because graphs of constant expansion have
logarithmic diameter (another fact that we will prove later in the course)

•
∑

i,j dSP (i, j) ≥ Ω(n2 log n), because, if r is the degree of the graph, then every vertex

has at most rt+1 other vertices at distance at most t from it, and so every vertex has
at least n/2 other vertices at distance Ω(log n) from itself.

• For every subsets S, T of size Ω(n) we have

min
i∈S,j∈T

dSP (i, j) ≤ O(1)

Because, if the edge expansion is Ω(1) and the degree is O(1), then for every set A of
≤ n/2, there are Ω(|A|) vertices outside A with neighbors in A, and so the number of
vertices at distance at most t from S is at least min{n/2, |S| · 2Ω(t)}. If |S| ≥ Ω(n),
then there is a t = O(1) such that more than n/2 vertices are at distance ≤ t from S,
and the same is true for T , meaning that S and T are at distance at most 2t = O(1)
from each other.

If divide dSP (·, ·) by the diameter of G, which is O(log n), we obtain a metric that satisfies
the conditions of the Fact above.

This means that we cannot only use the property of d(·, ·) being a semi-metric, but we have
to use the fact that it is of negative type, and we need to use in the proof the vectors xv
such that d(u, v) = ||xv − xu||2.
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Fact 13.2 is tight: using Bourgain’s theorem, or an earlier technique of Leighton and Rao,
if d(·, ·) is a semi-metric over [n] such that maxi,j d(i, j) ≤ 1 and

∑
i,j d(i, j) ≥ Ω(1), then

we can find sets S, T of size Ω(n) such that mini∈S,j∈T d(i, j) ≥ Ω(1/ log n).

Fact 13.3 For every n, there are vectors x1, . . . ,xn such that

• ||xi − xj ||2 ≤ 1 for all i, j

•
∑

i,j ||xi − xj ||2 ≥ Ω(n2)

• For every subsets S, T of size Ω(n) we have

min
i∈S,j∈T

||xi − xj ||2 ≤ O
(

log log n

log n

)

Here we will not even provide a sketch, but the idea is to use an ε-net of the sphere of
radius 1/2 in dimension O(log n/ log log n), with ε = o(1), and the isoperimeteric inequality
for the sphere.

This means that we need to use the fact that our vectors satisfy the triangle inequalities
||xi−xj ||2 ≤ ||xi−xk||2 + ||xk−xj ||2. It is also worth noting that for all vectors, including
those of Fact 13.3, we have

||xi − xj ||2 ≤ 2||xi − xk||2 + 2||xk − xj ||2

so any argument that proves the ARV Main Lemma will need to use the triangle inequalities
in a way that breaks down if we substitute them with the above “factor-of-2-triangle-
inequalities”.

Fact 13.3 is also tight, up to the factor of log log n, as we will see later in this lecture.

Finally, we note that the ARV Main Lemma is tight, which means that every step of its
proof will have to involve statements that are tight up to constant factors.

Fact 13.4 For every n that is a power of two, there is a negative-type metric d(·, ·) over a
set V of size n such that

• d(i, j) ≤ 1 for all i, j

•
∑

i,j d(i, j) ≥ Ω(n2)

• For every subsets S, T of size Ω(n) we have

min
i∈S,j∈T

d(i, j) ≤ O
(

1√
log n

)

Let n = 2t and V = {0, 1}t. The Hamming distance dH(·, ·) is a negative-type metric over
{0, 1}t (let xv be v itself, and notice that dH(u, v) = ||u− v||2) , and it satisfies
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• d(i, j) ≤ t for all i, j

•
∑

i,j d(i, j) ≥ Ω(t · n2)

• For every subsets S, T of size Ω(n) we have

min
i∈S,j∈T

d(i, j) ≤ O(
√
t)

which follows from isoperimetric results on the hypercube that we will not prove

Fact 13.4 follows by dividing the above metric by t.

13.2 Gaussian Projections

The tool of Gaussian projections is widely used to analyze semidefinite programs. Given
vectors x1, . . . ,xn ∈ Rm which are solutions to a semidefinite program of interest, we pick a
random Gaussian vector g ∼ Rm, and we consider the projections Y1, . . . , Ym, where Yi :=
〈xi,g〉. The vector g = (g1, . . . , gm) is sampled so that the coordinates gi are independent
standard normal distributions.

We see that each Yi has a Gaussian distribution with expectation 0 and variance ||xi||2,
and each difference Yi − Yj has a gaussian distribution with expectation 0 and variance
||xi − xj ||2 = d(i, j).

From standard bounds on Gaussian random variables,

P[|Yi − Yj | ≤ δ
√
d(i, j)] ≤ 2√

2π
δ < δ (13.1)

P[|Yi − Yj | ≥ t
√
d(i, j)] ≤ 2√

2π
e−t

2/2 < e−t
2/2 (13.2)

And, setting t =
√

5 log n in (13.2), we get

P[ ∀i, j. |Yi − Yj |2 ≤ 5 log n · d(i, j)] ≥ 1− o(1) (13.3)

Our first result is that, with Ω(1) probability, there are Ω(n2) pairs i, j such that |Yi−Yj | ≥
Ω(1).

Lemma 13.5 There are constants c1, σ that depend only on c such that with probability at
least 90%, if we let L be the c1n indices i with smallest Yi, and R be the c1n indices i with
largest Yi, we have

∀i ∈ L.∀j ∈ R |Yi − Yj | ≥ σ
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Proof: A standard Markov argument shows that if d(i, j) ≤ 1 for all pairs i, j, and∑
i,j d(i, j) ≥ cn2, then there are at least cn2/2 pairs at distance at least c/2. We argue

that, with probability at least 90%, Ω(n2) of those pairs are such that |Yi − Yj | ≥ Ω(1),
which implies the conclusion.

Let F be the set of “far” pairs i, j such that d(i, j) ≥ c/2.

By setting δ = 1
20 in (13.1), we have for each (i, j) ∈ F

P[|Yi − Yj | ≤
√
c/20
√

2] <
1

20

so, by linearity of expectation,

E[ |{(i, j) ∈ F. |Yi − Yj | ≤
√
c/20
√

2] <
|F |
20

and by Markov inequality

P
[ ∣∣∣∣{(i, j) ∈ F. |Yi − Yj | ≤

√
c

20
√

2

}∣∣∣∣ > |F |2

]
< .1

so, with probability ≥ 90%, there are at least |F |/2 ≥ cn2/4 pairs (i, j) such that |Yi−Yj | ≥√
c

20
√

2
.

If L and R are defined as above, and σ = mini∈L, j∈R Yj − Yi, then the number of pairs i, j
at distance > σ is at most

(1− (1− 2c1)2) · n2 ≤ 4c1n
2

and the lemma follows if we set c1 = c/16 and σ =
√
c/20
√

2. �

Note that, with 90%− o(1) probability, we have sets L, R, both of size ≥ c1n, such that

∀i, j ∈ V. |Yi − Yj |2 ≤ 5 log n · d(i, j)

∀i ∈ L, j ∈ R, Yj − Yi ≥ σ

so that

∀i ∈ L, j ∈ R, d(i, j) ≥ σ2

5 log n
≥ 1

O(log n)

Since we have not used the triangle inequality, the above bound is almost best possible,
given Fact 13.3 .

13.3 The Algorithm to Refine L and R

Consider the following algorithm, given x1, . . . ,xn ∈ Rm satisfying the assumptions of the
Main Lemma, and a parameter `,

• Pick a random gaussian vector g ∼ Rm
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• Define Yi := 〈xi,g〉 for i = 1, . . . , n

• Let L be the c1n indices i for which Yi is smallest

• Let R be the c1n indices i for which Yi is largest

• while there is an i ∈ L and j ∈ L such that d(i, j) < `

– remove i from L and j from R

• return L,R

Where c1, σ are the constants (that depend only on c) of Lemma 13.5. We will prove

Lemma 13.6 There is a constant c2 (dependent only on c) such that, if we set ` ≤ c2√
logn

,

there is at least a 80% probability that the algorithm removes at most c1n
2 pairs (i, j) in the

‘while’ loop.

Once we establish the above lemma, we have completed our proof of the ARV Main Lemma,
because, with 70% − o(1) probability, the output of the algorithm is a pair of sets L,R of
size ≥ c1n

2 such that for each i ∈ L and j ∈ R we have d(i, j) ≥ c2√
logn

.

We will prove the contrapositive, that is, if the algorithm has probability at least 20% of
removing at least c1n

2 pairs (i, j) in the ‘while’ loop, then ` ≥ c2/
√

log n.

Call M the set of pairs (i, j) removed by the algorithm (like Y1, . . . , Yn, L and R, M is a
random variable determined by g). If the algorithm has probability at least 20% of removing
at least c1n

2 pairs (i, j) in the ‘while’ loop, then there is a probability at least 10% that the
above happens, and that mini∈L,j∈R |Yi − Yj | ≥ σ. This means that with probability at
least 10% there are cin

2 disjoint pairs (i, j) such that |Yi − Yj | ≥ σ and d(i, j) ≤ `.
By the above observation, the following lemma implies Lemma 13.6 and hence the ARV
Main Lemma.

Lemma 13.7 Let d(·, ·) be a negative-type metric over a set V = {1, . . . , n}, let x1, . . . ,xn ∈
Rm be vectors such that d(i, j) = ||xi−xj ||2, let g ∼ Rm be a random vector with a Gaussian
distribution, and let Yi := 〈g,xi〉.
Suppose that, for constants c′, σ and a parameter `, we have that there is a ≥ 10% probability
that there are at least c′n pairs (i, j) such that d(i, j) ≤ ` and |Yi − Yj | ≥ σ.

Then there is a constant c2, that depends only on c′ and σ, such that

` ≥ c2√
log n

We will prove Lemma 14.1 in the next lecture.
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Chapter 14

ARV Analysis cont’d

In which we continue the analysis of the ARV rounding algorithm

We are continuing the analysis of the Arora-Rao-Vazirani rounding algorithm, which rounds
a Semidefinite Programming solution of a relaxation of sparsest cut into an actual cut, with
an approximation ratio O(

√
log |V |).

In previous lectures, we reduced the analysis of the algorithm to the following claim.

Lemma 14.1 Let d(·, ·) be a negative-type semimetric over a set V = {1, . . . , n}, let
x1, . . . ,xn ∈ Rm be vectors such that d(i, j) = ||xi − xj ||2, let g ∼ Rm be a random vector
with a Gaussian distribution, and let Yi := 〈g,xi〉.
Suppose that, for constants c′, σ and a parameter `, we have that there is a ≥ 10% probability
that there are at least c′n pairs (i, j) such that d(i, j) ≤ ` and |Yi − Yj | ≥ σ.

Then there is a constant c2, that depends only on c′ and σ, such that

` ≥ c2√
log n

14.1 Concentration of Measure

In the last lecture, we are have already introduced two useful properties of Gaussian distri-
butions: that there is a small probability of being much smaller than the standard deviation
in absolute value, and a very small probability of being much larger than the standard devi-
ation in absolute value. Here we introduce a third property of a somewhat different flavor.

For a set A ⊆ Rn and a distance parameter D, define

AD := {x ∈ Rm : ∃a ∈ A. ||x− a|| ≤ D}

the set of points at distance at most D from A. Then we have:
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Theorem 14.2 (Gaussian concentration of measure) There is a constant c3 such that,
for every ε, δ > 0 and for every set A ⊆ Rn, if

P[A] ≥ ε

then

P[AD] ≥ 1− δ

for every D ≥ c3 ·
√

log 1
εδ , where the probabilities are taken according to the Gaussian

measure in Rm, that is P[A] = P[g ∈ A], where g = (g1, . . . , gm) and the gi are independent
Gaussians of mean 0 and variance 1.

The above theorem says that if we have some property that is true with ≥ 1% probability
for a random Gaussian vector g, then there is a ≥ 99% probability that g is within distance
O(1) of a vector g′ that satisfies the required property. In high dimension m, this is a non-
trivial statement because, with very high probability ||g|| is about

√
m, and so the distance

between g and g′ is small relative to the length of the vector.

We will use the following corollary.

Corollary 14.3 Let x1, . . . ,xn be vectors in Rm and let dmax = maxj=2,...,n ||xj − x1||2.
Let g be a random Gaussian vector in Rm, and let Yi = 〈xi,g〉. If, for some k and ε, we
have

P[∃j. Yj − Y1 ≥ k] ≥ ε

then

P[∃j. Yj − Y1 ≥ k − c3

√
log 1/(εγ) ·

√
dmax] ≥ 1− γ

Proof: Let
A := {g : ∃j. Yj − Y1 ≥ k] ≥ ε

By assumption, we have P[A] ≥ ε, and so, by concentration of measure:

P[∃g′. ||g − g′|| ≤ c3

√
log 1/(εγ) ∧ g′ ∈ A] ≥ 1− γ

The even in the above probability can be rewritten as

∃g′ ∈ Rm ∃j ∈ {2, . . . , n}. ||g − g′|| ≤ c3

√
log

1

εγ
∧ 〈xj − x1,g

′〉 ≥ k

and the above condition gives us

k ≤ 〈xj − x1,g
′〉

= 〈xj − x1,g〉+ 〈xj − x1,g
′ − g〉

≤ 〈xj − x1,g〉+ ||xj − x1|| · ||g′ − g||

≤ Yj − Y1 +
√
dmax · c3

√
log

1

εγ
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The (use of the) above statement is by far the most innovative part of the analysis of Arora,
Rao and Vazirani, so it is worth developing an intuitive feeling for its meaning.

Let’s say that we are interested in the distribution of pmax := maxj=2,...,n Yj −Y1. We know
that the random variables Yj −Y1 are Gaussians of mean 0 and standard deviation at most√
dmax, but it is impossible to say anything about, say, the average value or the median

value of pmax without knowing something about the correlation of the random variables
Yj − Y1.

Interestingly, the above Corollary says something about the concentration of pmax without
any additional information. The corollary says that, for example, the first percentile of
pmax and the 99-th percentile of pmax differ by at most O(

√
dmax), and that we have a

concentration result of the form

P[|pmax −median(pmax)| > t ·
√
dmax] ≤ e−Ω(t2)

which is a highly non-trivial statement for any configuration of xi for which pmax >>
√
dmax.

14.2 Reworking the Assumption

Lemma 14.4 Under the assumptions of Lemma 14.1, there is a fixed set C ⊆ [n], |C| ≥
c′

10n, and a set Mg of disjoint pairs {i, j}, dependent on g, such that, for every g and for
every pair {i, j} ∈Mg we have

d(i, j) ≤ `

and
|Yi − Yj | ≥ σ

and for all i ∈ C we have

P[∃j ∈ C. {i, j} ∈Mg] ≥ c′

20

Proof: Let Mg be the set of disjoint pairs promised by the assumptions of Lemma 14.1.
Construct a weighted graph G = ([n],W ), where the weight of the edge {i, j} is P[{i, j} ∈
Mg]. The degree of every vertex is at most 1, and the sum of the degrees is twice the
expectation of |M |, and so, by the assumptions of Lemma 14.1, it is at least c′n/5.

Now, repeatedly delete from G all vertices of degree at most c′n/20, and all the edges
incident on them, until no such vertex remains. At the end we are left with a (possibly
empty!) graph in which all remaining vertices have degree at most c′n/20; each deletion
reduces the sum of the degree by at most c′/10, and so the residual graph has total degree
at least c′n/10, and hence at least c′n/10 vertices �

By the above Lemma, the following result implies Lemma 14.1 and hence the ARV Main
Lemma.
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Lemma 14.5 Let d(·, ·) be a semi-metric over a set C such that d(u, v) ≤ 1 for all u, v ∈ C,
let {xv}v∈C be a collection of vectors in Rm, such that d(i, j) := ||xu−xv||2 is a semimetric,
let g be a random Gaussian vector in Rm, define Yv := 〈g,xv〉, and suppose that, for every
g, we can define a set of disjoint pairs Mg such that, with probability 1 over g,

∀{u, v} ∈Mg. |Yu − Yv| ≥ σ ∧ d(u, v) ≤ `

and
∀u ∈ C. P[∃v.{u, v} ∈Mg] ≥ ε

Then

` ≥ Ωε,σ

(
1√

log |C|

)
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Chapter 15

ARV Analysis, part 3

In which we complete the analysis of the ARV rounding algorithm

We are finally going to complete the analysis of the Arora-Rao-Vazirani rounding algorithm,
which rounds a Semidefinite Programming solution of a relaxation of sparsest cut into an
actual cut, with an approximation ratio O(

√
log |V |).

In previous lectures, we reduced the analysis of the algorithm to the following claim.

Lemma 15.1 Let d(·, ·) be a semi-metric over a set C such that d(u, v) ≤ 1 for all u, v ∈ C,
let {xv}v∈C be a collection of vectors in Rm, such that d(i, j) := ||xu−xv||2 is a semimetric,
let g be a random Gaussian vector in Rm, define Yv := 〈g,xv〉, and suppose that, for every
g, we can define a set of disjoint pairs Mg such that, with probability 1 over g,

∀{u, v} ∈Mg. |Yu − Yv| ≥ σ ∧ d(u, v) ≤ `

and
∀u ∈ C. P[∃v.{u, v} ∈Mg] ≥ ε

Then

` ≥ Ωε,σ

(
1√

log |C|

)

15.1 An Inductive Proof that Gives a Weaker Result

In this section we will prove a weaker lower bound on `, of the order of 1

(log |C|)
2
3

. We will

then show how to modify the proof to obtain the tight result.

We begin will the following definitions. We define the ball or radius r centered at u as

B(u, r) := {v ∈ C. d(u, v) ≤ r}
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We say that a point u ∈ C has the (p, r, δ)-Large-Projection-Property, or that it is (p, r, δ)-
LPP if

P
[

max
v∈B(u,r)

Yv − Yu ≥ p
]
≥ δ

Lemma 15.2 Under the assumptions of Lemma 15.1, there is a constant c4 > 0 (that

depends only on ε and σ) such that for all t ≤ c4 · 1√
`
, at least

(
ε
8

)t · |C| elements of C have

the
(
tσ2 , t`, 1−

ε
4

)
Large Projection Property.

Proof: We will prove the Lemma by induction on t. We call Ct the set of elements of C
that are

(
tσ2 , t`, 1−

ε
4

)
-LPP

Let M ′g be the set of ordered pairs (u, v) such that {u, v} ∈ Mg and Yv > Yu, and hence
Yv − Yu ≥ σ. Because g and −g have the same distribution, we have that, for every u ∈ C,
there is probability ≥ ε/2 that there is a v ∈ C such that (v, u) ∈ M ′g (a fact that we will
use in the inductive step).

For the base case t = 0 there is nothing to prove.

For the inductive case, define the function F : Ct → C (which will be a random variable
dependent on g) such that F (v) is the lexicographically smallest w ∈ B(v, t`) such that
Yw − Yv ≥ σ if such a w exists, and F (v) = ⊥ otherwise. The definition of Ct is that

P[F (v) 6= ⊥] ≥ 1 − ε/4 for every v ∈ Ct, and the inductive assumption is that |Ct| ≥
|C| · (ε/8)t .

By a union bound, for every v ∈ Ct, there is probability at least ε/4 that there is an u ∈ C
such that (u, v) ∈M ′g and F (v) = w 6= ⊥. In this case, we will define F ′(u) = w, otherwise
F ′(u) = ⊥.

Note that the above definition is consistent, because M ′g is a set of disjoint pairs, so for
every u there is at most one v that could be used to define F ′(u). We also note that, if
F ′(u) = w 6= ⊥, then

Yw − Yu ≥ t ·
σ

2
+ σ ,

d(u,w) ≤ (t+ 1) · `

and ∑
u∈C

P[F ′(u) 6= ⊥] =
∑
v∈Ct

[F (v) 6= ⊥ ∧ ∃u.(u, v) ∈M ′g] ≥ |Ct| ·
ε

4

Now we can use another averaging argument to say that there have to be at least |Ct| · ε8
elements u of C such that

P[F ′(u) 6= ⊥] ≥ ε

8
· |Ct|
|C|
≥
( ε

8

)t+1

Let us call Ct+1 the set of such element. As required, |Ct+1| ≥ |C| · (ε/8)t+1.

By applying concentration of measure, the fact that, for every u ∈ Ct+1 we have

P
[

max
w∈B(u,(t+1)·`)

Yw − Yu ≥ (t+ 1)
σ

2
+
σ

2

]
≥
( ε

8

)t+1

94



implies that, for every u ∈ Ct+1

P

[
max

w∈B(u,(t+1)·`)
Yw − Yu ≥ (t+ 1)

σ

2
+
σ

2
− c3

√
log

4 · 8t+1

εt+2

√
(t+ 1) · `

]
≥ 1− ε

4

and the inductive step is proved, provided

σ

2
≥ c3

√
(t+ 2) · log

8

ε

√
(t+ 1) · `

which is true when

t+ 2 ≤ σ

2c3

√
log 8/ε

· 1√
`

which proves the lemma if we choose c4 appropriately. �

Applying the previous lemma with t = c4/
√
`, we have that, with probability Ω(1), there is

a pair u, v in C such that
Yv − Yu ≥ Ω(1/

√
`)

and
d(u, v) ≤ O(

√
`)

but we also know that, with 1− o(1) probability, for all pairs u, v in C,

|Yv − Yu|2 ≤ O(log |C|) · d(i, j)

and so
1

`
≤ O(log |C|)

√
`

implying

` ≥ Ω

(
1

(log |C|)2/3

)

15.2 The Tight Bound

In the result proved in the previous section, we need σ
2 , which is a constant, to be bigger

than the loss incurred in the application of concentration of measure, which is of the order
of t
√
`. A factor of

√
t` simply comes from the distances between the points that we are

considering; an additional factor of
√
t comes from the fact that we need to push up the

probability from a bound that is exponentially small in t.

The reason for such a poor probability bound is the averaging argument: each element of Ct
has probability Ω(1) of being the “middle point” of the construction, so that the sum over
the elements u of C of the probability that u has F ′(u) 6= ⊥ adds up to Ω(|Ct|); such overall
probability, however, could be spread out over all of C, with each element of C getting a
very low probability of the order of |Ct|/|C|, which is exponentially small in t.

Not all elements of C, however, can be a u for which F ′(u) 6= ⊥; this is only possible for
elements u that are within distance ` from Ct. If the set Γ`(Ct) := {u : ∃v ∈ Ct : d(u, v) ≤ `}
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has cardinality of the same order of Ct, then we only lose a constant factor in the probability,
and we do not pay the extra

√
t term in the application of concentration of measure. But

what do we do if Γ`(Ct) is much bigger than Ct? In that case we may replace Ct and Γ`(Ct)
and have similar properties.

Lemma 15.3 Under the assumptions of Lemma 15.1, if S ⊆ C is a set of points such that
for every v ∈ S

P
[

max
w∈B(v,d)

Yw − Yv ≥ p
]
≥ ε

then, for every distance D, every k > 0, and every u ∈ ΓD(S)

P
[

max
w∈B(u,d+D)

Yw − Yu ≥ p−
√
D · k

]
≥ ε− e−k2/2

That is, if all the elements of S are (p, d, ε)-LPP, then all the elements of ΓD(S) are (p −
k
√
D, d+D, ε− e−k2/2)-LPP.

Proof: If u ∈ ΓD(S), then there is v ∈ S such that d(u, v) ≤ D, and, with probability
1− e−k2/2 we have Yu − Yv ≤

√
D · k. The claim follows from a union bound. �

Lemma 15.4 Under the assumptions of Lemma 15.1, there is a constant c5 > 0 (that
depends only on ε and σ) such that for all t ≤ c5 · 1

` , there is a set Ct ⊆ C such that

|Ct| ≥ |C| · (ε/8)t, every element of Ct is
(
t · σ4 ,

(
2t+ log 8

ε

|Ct|
|C|

)
· `, 1− ε

4

)
-LPP, and

|Γ`(Ct)| ≤
8

ε
|Ct|

Proof: The base case t = 0 is proved by setting C0 = C.

For the inductive step, we define F (·) and F ′(·) as in the proof of Lemma 15.2. We have
that if F ′(u) = w 6= ⊥, then

Yw − Yu ≥ t ·
σ

4
+ σ ,

d(u,w) ≤
(

2t+ log 8
ε

|Ct|
|C|

)
· `+ ` ,

and ∑
u∈C

P[F ′(u) 6= ⊥] =
∑
v∈Ct

[F (v) 6= ⊥ ∧ ∃u.(u, v) ∈M ′g] ≥ |Ct| ·
ε

4

Now we can use another averaging argument to say that there have to be at least |Ct| · ε8
elements u of C such that

P[F ′(u) 6= ⊥] ≥ ε

8
· |Ct|
|Γ`(Ct)|

≥
(
ε2

64

)
Let us call C

(0)
t+1 the set of such elements.
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Define C
(1)
t+1 := Γ`(C

(0)
t+1), C

(2)
t+1 := Γ`(C

(1)
t+1), and so on, and let k be the first time such that

|C(k+1)
t+1 | ≤ 8

ε |C
(k)
t+1|. We will define Ct+1 := C

(k)
t+1. Note that

|Ct+1| ≥
(

8

ε

)k
· |C(0)

t+1| ≥
(

8

ε

)k−1

· |Ct| ≥
(

8

ε

)k−1−t
|C|

which implies that k ≤ t+ 1.

We have |Ct+1| ≥ |C(0)
t+1| ≥ ε

8 |Ct| so we satisfy the inductive claim about the size of Ct.

Regarding the other properties, we note that Ct+1 ⊆ Γk`(C
(0)
t+1), and that every element of

C
(0)
t+1 is (

t
σ

4
+ σ,

(
2t+ 1 + log 8

ε

|Ct|
|C|

)
· `, ε

2

64

)
− LPP

so we also have that every element of Ct+1 is(
t
σ

4
+
σ

2
,

(
2t+ 1 + k + log 8

ε

|Ct|
|C|

)
· `, ε

2

128

)
− LPP

provided

σ

2
≥
√

2 log
128

ε2
· k`

which we can satisfy with an appropriate choice of c4, recalling that k ≤ t+ 1.

Then we apply concentration of measure to deduce that every element of Ct+1 is(
t
σ

4
+
σ

4
,

(
2t+ 1 + k + log 8

ε

|Ct|
|C|

)
· `, 1− ε

4

)
− LPP

provided that

σ

4
≥ c3

√
log

512

ε3
·
(

2t+ 1 + k + log 8
ε

|Ct|
|C|

)
· `

which we can again satisfy with an appropriate choice of c4, because k ≤ t+ 1 and log 8
ε

|Ct|
|C|

is smaller than or equal to zero.

Finally,

2t+ 1 + k + log 8
ε

|Ct|
|C|
≤ 2t+ 2 + log 8

ε

|Ct+1|
|C|

because, as we established above,

|Ct+1| ≥
(

8

ε

)k−1

|Ct|

�
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By applying Lemma 15.4 with t = Ω(1/`), we find that there is Ω(1) probability that there
are u, v in C such that

Yj − Yi ≥ Ω(1/`)

d(i, j) ≤ 1

|Yi − Yj |2 ≤ O(log n) · d(i, j)

which, together, imply

` ≥ Ω

(
1√

log n

)
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Chapter 16

Cayley Graphs of Abelian Groups

In which we show how to find the eigenvalues and eigenvectors of Cayley graphs of Abelian
groups, we find tight examples for various results that we proved in earlier lectures, and,
along the way, we develop the general theory of harmonic analysis which includes the Fourier
transform of periodic functions of a real variable, the discrete Fourier transform of periodic
functions of an integer variable, and the Walsh transform of Boolean functions.

Earlier, we prove the Cheeger inequalities

λ2

2
≤ φ(G) ≤

√
2λ2

and the fact that Fiedler’s algorithm, when given an eigenvector of λ2, finds a cut (S, V −S)
such that φ(S, V − S) ≤ 2

√
φ(G). We will show that all such results are tight, up to

constants, by proving that

• The dimension-d hypercube Hd has λ2 = 1 − 2
d and h(Hd) = 1

d , giving an infinite

family of graphs for which λ2
2 = φ(G), showing that the first Cheeger inequality is

exactly tight.

• The n-cycle Cn has λ2 = O(n−2), and φ(Cn) = 2
n , giving an infinite family of graphs

for which φ(G) = Ω(
√
λ2), showing that the second Cheeger inequality is tight up to

a constant.

• There is an eigenvector of the 2nd eigenvalue of the hypercube Hd, such that Fiedler’s
algorithm, given such a vector, outputs a cut (S, V − S) of expansion φ(S, V − S) =
Ω(1/

√
d), showing that the analysis of the Fiedler’s algorithm is tight up to a constant.

In this lecture we will develop some theoretical machinery to find the eigenvalues and
eigenvectors of Cayley graphs of finite Abelian groups, a class of graphs that includes the
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cycle and the hypercube, among several other interesting examples. This theory will also
be useful later, as a starting point to talk about constructions of expanders.

For readers familiar with the Fourier analysis of Boolean functions, or the discrete Fourier
analysis of functions f : Z/NZ → C, or the standard Fourier analysis of periodic real
functions, this theory will give a more general, and hopefully interesting, way to look at
what they already know.

16.1 Characters

We will use additive notation for groups, so, if Γ is a group, its unit will be denoted by
0, its group operation by +, and the inverse of element a by −a. Unless, noted otherwise,
however, the definitions and results apply to non-abelian groups as well.

Definition 16.1 (Character) Let Γ be a group (we will also use Γ to refer to the set of
group elements). A function f : Γ→ C is a character of Γ if

• f is a group homomorphism of Γ into the multiplicative group C− {0}.

• for every x ∈ Γ, |f(x)| = 1

Though this definition might seem to not bear the slightest connection to our goals, the
reader should hang on because we will see next time that finding the eigenvectors and
eigenvalues of the cycle Cn is immediate once we know the characters of the group Z/nZ,
and finding the eigenvectors and eigenvalues of the hypercube Hd is immediate once we
know the characters of the group (Z/2Z)d.

Remark 16.2 (About the Boundedness Condition) If Γ is a finite group, and a is
any element, then

a+ · · ·+ a︸ ︷︷ ︸
|Γ| times

= 0

and so if f : Γ→ C is a group homomorphism then

1 = f(0) = f(a+ · · ·+ a︸ ︷︷ ︸
|Γ| times

) = f(a)|Γ|

and so f(a) is a root of unity and, in particular, |f(a)| = 1. This means that, for finite
groups, the second condition in the definition of character is redundant.

In certain infinite groups, however, the second condition does not follow from the first, for
example f : Z→ C defined as f(n) = en is a group homomorphism of (Z,+) into (C−{0}, ·)
but it is not a character.

Just by looking at the definition, it might look like a finite group might have an infinite
number of characters; the above remark, however, shows that a character of a finite group
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Γ must map into |Γ|-th roots of unity, of which there are only |Γ|, showing a finite |Γ||Γ|
upper bound to the number of characters. Indeed, a much stronger upper bound holds, as
we will prove next, after some preliminaries.

Lemma 16.3 If Γ is finite and χ is a character that is not identically equal to 1, then∑
a∈Γ χ(a) = 0

Proof: Let b be such that χ(b) 6= 1. Note that

χ(b) ·
∑
a∈Γ

χ(a) =
∑
a∈Γ

χ(b+ a) =
∑
a∈Γ

χ(a)

where we used the fact that the mapping a→ b+ a is a permutation. (We emphasize that
even though we are using additive notation, the argument applies to non-abelian groups.)
So we have

(χ(b)− 1) ·
∑
a∈Γ

χ(a) = 0

and since we assumed χ(b) 6= 1, it must be
∑

a∈Γ χ(a) = 0. �

If Γ is finite, given two functions f, g : Γ→ C, define the inner product

〈f, g〉 :=
∑
a∈Γ

f(a)g∗(a)

Lemma 16.4 If χ1, χ2 : Γ→ C are two different characters of a finite group Γ, then

〈χ1, χ2〉 = 0

We will prove Lemma 16.4 shortly, but before doing so we note that, for a finite group Γ,
the set of functions f : Γ → C is a |Γ|-dimensional vector space, and that Lemma 16.4
implies that characters are orthogonal with respect to an inner product, and so they are
linearly independent. In particular, we have established the following fact:

Corollary 16.5 If Γ is a finite group, then it has at most |Γ| characters.

It remains to prove Lemma 16.4, which follows from the next two statements, whose proof
is immediate from the definitions.

Fact 16.6 If χ1, χ2 are characters of a group Γ, then the mapping x→ χ1(x) ·χ2(x) is also
a character.

Fact 16.7 If χ is a character of a group Γ, then the mapping x→ χ∗(x) is also a character,
and, for every x, we have χ(x) · χ∗(x) = 1.
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To complete the proof of Lemma 16.4, observe that:

• the function χ(x) := χ1(x) · χ∗2(x) is a character;

• the assumption of the lemma is that there is an a such that χ1(a) 6= χ2(a), and so,
for the same element a, χ(a) = χ1(a) · χ∗2(a) 6= χ2(a) · χ∗2(a) = 1

• thus χ is a character that is not identically equal to 1, and so

0 =
∑
a

χ(a) = 〈χ1, χ2〉

Notice that, along the way, we have also proved the following fact:

Fact 16.8 If Γ is a group, then the set of characters of Γ is also a group, with respect
to the group operation of pointwise multiplication. The unit of the group is the character
mapping every element to 1, and the inverse of a character is the pointwise conjugate of the
character.

The group of characters is called the Pontryagin dual of Γ, and it is denoted by Γ̂.

We now come to the punchline of this discussion.

Theorem 16.9 If Γ is a finite abelian group, then it has exactly |Γ| characters.

Proof: We give a constructive proof. We know that every finite abelian group is isomorphic
to a product of cyclic groups

(Z/n1Z)× (Z/n2Z)× · · · × (Z/nkZ)

so it will be enough to prove that

1. the cyclic group Z/nZ has n characters;

2. if Γ1 and Γ2 are finite abelian groups with |Γ1| and |Γ2| characters, respectively, then
their product has |Γ1| · |Γ2| characters.

For the first claim, consider, for every r ∈ {0, . . . , n− 1}, the function

χr(x) := e2πirx/n

Each such function is clearly a character (0 maps to 1, χr(−x) is the multiplicative inverse
of χr(x), and, recalling that e2πik = 1 for every integer k, we also have χr(a+ b mod n) =
e2πira/n · e2πirb/n), and the values of χr(1) are different for different values of r, so we get
n distinct characters. This shows that Z/nZ has at least n characters, and we already
established that it can have at most n characters.

102



For the second claim, note that if χ1 is a character of Γ1 and χ2 is a character of Γ2,
then it is easy to verify that the mapping (x, y) → χ1(x) · χ2(y) is a character of Γ1 × Γ2.
Furthermore, if (χ1, χ2) and (χ′1, χ

′
2) are two distinct pairs of characters, then the mappings

χ(x, y) := χ1(x) · χ2(y) and χ′(x, y) := χ′1(x) · χ′2(y) are two distinct characters of Γ1 × Γ2,
because we either have an a such that χ1(a) 6= χ′1(a), in which case χ(a, 0) 6= χ′(a, 0), or we
have a b such that χ2(b) 6= χ′2(b), in which case χ(0, b) 6= χ′(0, b). This shows that Γ1 × Γ2

has at least |Γ1| · |Γ2| characters, and we have already established that it can have at most
that many �

This means that the characters of a finite abelian group Γ form an orthogonal basis for
the set of all functions f : Γ → C, so that any such function can be written as a linear
combination

f(x) =
∑
χ

f̂(χ) · χ(x)

For every character χ, 〈χ, χ〉 = |Γ|, and so the characters are actually a scaled-up orthonor-
mal basis, and the coefficients can be computed as

f̂(χ) =
1

|Γ|
∑
x

f(x)χ∗(x)

Example 16.10 (The Boolean Cube) Consider the case Γ = (Z/2Z)n, that is the group
elements are {0, 1}n, and the operation is bitwise xor. Then there is a character for every
bit-vector (r1, . . . , rn), which is the function

χr1,...,rn(x1, . . . , xn) := (−1)r1x1+···rnxn

Every boolean function f : {0, 1}n → C can thus be written as

f(x) =
∑

r∈{0,1}n
f̂(r) · (−1)

∑
i rixi

where

f̂(r) =
1

2n

∑
x∈{0,1}n

f(x) · (−1)
∑
i rixi

which is the boolean Fourier transform.

Example 16.11 (The Cyclic Group) To work out another example, consider the case
Γ = Z/NZ. Then every function f : {0, . . . , N − 1} → C can be written as

f(x) =
∑

r∈{0,...,N−1}

f̂(r)e2πirx/n
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where

f̂(x) =
1

N

∑
x

f(x)e−2πirx/n

which is the discrete Fourier transform.

16.2 A Look Beyond

Why is the term ”Fourier transform” used in this context? We will sketch an answer to this
question, although what we say from this point on is not needed for our goal of finding the
eigenvalues and eigenvectors of the cycle and the hypercube.

The point is that it is possible to set up a definitional framework that unifies both what we
did in the previous section with finite Abelian groups, and the Fourier series and Fourier
transforms of real and complex functions.

In the discussion of the previous section, we started to restrict ourselves to finite groups Γ
when we defined an inner product among functions f : Γ→ C.

If Γ is an infinite abelian group, we can still define an inner product among functions
f : Γ→ C, but we will need to define a measure over Γ and restrict ourselves in the choice of
functions. A measure µ over (a sigma-algebra of subsets of) Γ is a Haar measure if, for every
measurable subset A and element a we have µ(a+A) = µ(A), where a+A = {a+b : b ∈ A}.
For example, if Γ is finite, µ(A) = |A| is a Haar measure. If Γ = (Z,+), then µ(A) = |A| is
also a Haar measure (it is ok for a measure to be infinite for some sets), and if Γ = (R,+)
then the Lebesgue measure is a Haar measure. When a Haar measure exists, it is more or
less unique up to multiplicative scaling. All locally compact topological abelian groups have
a Haar measure, a very large class of abelian groups, that include all finite ones, (Z,+),
(R,+), and so on.

Once we have a Haar measure µ over Γ, and we have defined an integral for functions
f : Γ→ C, we say that a function is an element of L2(Γ) if∫

Γ
|f(x)|2dµ(x) <∞

For example, if Γ is finite, then all functions f : Γ → C are in L2(Γ), and a function
f : Z→ C is in L2(Z) if the series

∑
n∈Z |f(n)|2 converges.

If f, g ∈ L2(Γ), we can define their inner product

〈f, g〉 :=

∫
Γ
f(x)g∗(x)dµ(x)

and use Cauchy-Schwarz to see that |〈f, g〉| <∞.

Now we can repeat the proof of Lemma 16.4 that 〈χ1, χ2〉 = 0 for two different characters,
and the only step of the proof that we need to verify for infinite groups is an analog of

104



Lemma 16.3, that is we need to prove that if χ is a character that is not always equal to 1,
then ∫

Γ
χ(x)dµ(x) = 0

and the same proof as in Lemma 16.3 works, with the key step being that, for every group
element a, ∫

Γ
χ(x+ a)dµ(x) =

∫
Γ
χ(x)dµ(x)

because of the property of µ being a Haar measure.

We don’t have an analogous result to Theorem 16.9 showing that Γ and Γ̂ are isomorphic,
however it is possible to show that Γ̂ itself has a Haar measure µ̂, that the dual of Γ̂ is
isomorphic to Γ, and that if f : Γ→ C is continuous, then it can be written as the “linear
combination”

f(x) =

∫
Γ̂
f̂(χ)χ(x)dµ̂(x)

where

f̂(χ) =

∫
Γ
f(x)χ∗(x)dµ(x)

In the finite case, the examples that we developed before correspond to setting µ(A) :=
|A|/|Γ| and µ̂(A) = |A|.

Example 16.12 (Fourier Series) The set of characters of the group [0, 1) with the oper-
ation of addition modulo 1 is isomorphic to Z, because for every integer n we can define the
function χn : [0, 1)→ C

χn(x) := e2πixn

and it can be shown that there are no other characters. We thus have the Fourier series for
continuous functions f : [0, 1)→ C,

f(x) =
∑
n∈Z

f̂(n)e2πixn

where

f̂(n) =

∫ 1

0
f(x)e−2πixndx
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16.3 Cayley Graphs and Their Spectrum

Let Γ be a finite group. We will use additive notation, although the following definition
applies to non-commutative groups as well. A subset S ⊆ Γ is symmetric if a ∈ S ⇔ −a ∈ S.

Definition 16.13 For a group Γ and a symmetric subset S ⊆ Γ, the Cayley graph Cay(Γ, S)
is the graph whose vertex set is Γ, and such that (a, b) is an edge if and only if b − a ∈ S.
Note that the graph is undirected and |S|-regular.

We can also define Cayley weighted graphs: if w : Γ → R is a function such that w(a) =
w(−a) for every a ∈ Γ, then we can define the weighted graph Cay(G,w) in which the edge
(a, b) has weight w(b− a). We will usually work with unweighted graphs, although we will
sometimes allow parallel edges (corresponding to positive integer weights).

Example 16.14 (Cycle) The n-vertex cycle can be constructed as the Cayley graph Cay(Z/nZ, {−1, 1}).

Example 16.15 (Hypercube) The d-dimensional hypercube can be constructed as the
Cayley graph

Cay((Z/2Z)d, {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)})

where the group is the set {0, 1}d with the operation of bit-wise xor, and the set S is the set
of bit-vectors with exactly one 1.

If we construct a Cayley graph from a finite abelian group, then the eigenvectors are the
characters of the groups, and the eigenvalues have a very simple description.

Lemma 16.16 Let Γ be a finite abelian group, χ : Γ→ C be a character of Γ, S ⊆ Γ be a
symmetric set. Let A be the adjacency matrix of the Cayley graph G = Cay(Γ, S). Consider
the vector x ∈ CΓ such that xa = χ(a).

Then x is an eigenvector of G, with eigenvalue

∑
s∈S

χ(s)

Proof: Consider the a-th entry of Mx:

(Ax)a =
∑
b

Aa,bxb

=
∑

b:b−a∈S
χ(b)

=
∑
s∈S

χ(a+ s)
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= xa ·
∑
s∈S

χ(s)

And so

Ax =

(∑
s∈S

χ(s)

)
· x

�

The eigenvalues of the form
∑

s∈S χ(s), where χ is a character, enumerate all the eigenvalues
of the graph, as can be deduced from the following observations:

1. Every character is an eigenvector;

2. The characters are linearly independent (as functions χ : Γ→ C and, equivalently, as
vectors in CΓ);

3. There are as many characters as group elements, and so as many characters as nodes
in the corresponding Cayley graphs.

It is remarkable that, for a Cayley graph, a system of eigenvectors can be determined based
solely on the underlying group, independently of the set S.

16.4 The Cycle

The n-cycle is the Cayley graph Cay(Z/nZ, {−1,+1}). Recall that, for every n ∈ {0, . . . , n−
1}, the group Z/nZ has a character χr(x) = e2πirx/n.

This means that for every r ∈ {0, . . . , n− 1} we have the eigenvalue

λr = e2πir/n + e−2πir/n = 2 cos(2πr/n)

where we used the facts that eix = cos(x) + i sin(x), that cos(x) = cos(−x), and sin(x) =
− sin(−x).

For r = 0 we have the eigenvalue 2. For r = 1 we have the second largest eigenvalue
2 cos(2π/n) = 2 − Θ(1/n2). If λ is an eigenvalue of the adjacency matrix, then 1 − λ/2 is
an eigenvalue of the normalized Laplacian. From the above calculations, we have that the
second smallest Laplacian eigenvalue is Θ(n−2).

The expansion of the cycle is φ(Cn) ≥ 2/n, and so the cycle is an example in which the
second Cheeger inequality is tight.
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16.5 The Hypercube

The group {0, 1}d with bitwise xor has 2d characters; for every r ∈ {0, 1}d there is a character
χr : {0, 1}d → {−1, 1} defined as

χr(x) = (−1)
∑
i rixi

Let us denote the set S by {e1, . . . , ed}, where we let ej ∈ {0, 1}d denote the bit-vector
that has a 1 in the j-th position, and zeroes everywhere else. This means that, for every
bit-vector r ∈ {0, 1}d, the hypercube has the eigenvalue

∑
j

χr(e
j) =

∑
j

(−1)rj = −|r|+ d− |r| = d− 2|r|

where we denote by |r| the weight of r, that is, the number of ones in r.

Corresponding to r = (0, . . . , 0), we have the eigenvalue d.

For each of the d vectors r with exactly one 1, we have the second largest eigenvalued− 2.
The second smallest Laplacian eigenvalue is 1− (d− 2)/d = 2/d.

Let us compute the expansion of the hypercube. Consider “dimension cuts” of the form
Si := {x ∈ {0, 1}n : xi = 0}. The set Si contains half of the vertices, and the number of
edges that cross the cut (Si, V − Si) is also equal to half the number of vertices (because
the edges form a perfect matching), so we have φ(Si, V − Si) = 1

d and so φ(G) ≤ 1
d .

These calculations show that the first Cheeger inequality λ2/2 ≤ φ(G) is tight for the
hypercube.

Finally, we consider the tightness of the approximation analysis of Fiedler’s algorithm.

We have seen that, in the d-dimensional hypercube, the second eigenvalue has multiplicity
d, and that its eigenvectors are vectors xj ∈ R2d such that xja = (−1)aj . Consider now the
vector x :=

∑
j xj ; this is still clearly an eigenvector of the second eigenvalue. The entries

of the vector x are

xa =
∑
j

(−1)aj = d− 2|a|

Suppose now that we apply Fiedler’s algorithm using x as our vector. This is equivalent to
considering all the cuts (St, V − St) in the hypercube in which we pick a threshold t and
define St := {a ∈ {0, 1}n : |a| ≥ t}.
Some calculations with binomial coefficients show that the best such “threshold cut” is the
“majority cut” in which we pick t = n/2, and that the expansion of Sn/2 is

φ(Sn/2, V − Sn/2) = Ω

(
1√
d

)
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This gives an example of a graph and of a choice of eigenvector for the second eigenvalue
that, given as input toFiedler’s algorithm, result in the output of a cut (S, V −S) such that
φ(S, V − S) ≥ Ω(

√
φ(G)). Recall that we proved φ(S, V − S) ≤ 2

√
φ(G), which is thus

tight, up to constants.
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Chapter 17

Constructions of Expanders via the Zig-Zag
Graph Product

In which we give an explicit construction of expander graphs of polylogarithmic degree, state
the properties of the zig-zag product of graphs, and provide an explicit construction of a
family of constant-degree expanders using the zig-zag product and the polylogarithmic-degree
construction.

A family of expanders is a family of graphs Gn = (Vn, En), |Vn| = n, such that each graph
is dn-regular, and the edge-expansion of each graph is at least h, for an absolute constant
h independent of n. Ideally, we would like to have such a construction for each n, although
it is usually enough for most applications that, for some constant c and every k, there is an
n for which the construction applies in the interval {k, k + 1, . . . , ck}, or even the interval
{k, . . . , ckc}. We would also like the degree dn to be slowly growing in n and, ideally, to be
bounded above by an explicit constant. Today we will see a simple construction in which
dn = O(log2 n) and a more complicated one in which dn = O(1).

An explicit construction of a family of expanders is a construction in which Gn is “efficiently
computable” given n. The weakest sense in which a construction is said to be explicit
is when, given n, the (adjacency matrix of the) graph Gn can be constructed in time
polynomial in n. A stronger requirement, which is necessary for several applications, is
that given n and i ∈ {1, . . . , n}, the list of neighbors of the i-th vertex of Gn can be
computed in time polynomial in log n.

In many explicit constructions of constant-degree expanders, the construction is extremely
simple, and besides satisfying the stricter definition of “explicit” above, it is also such that
the adjacency list of a vertex is given by a “closed-form formula.” The analysis of such
constructions, however, usually requires very sophisticated mathematical tools.

Example 17.1 Let p be a prime, and define the graph Gp = (Vp, Ep) in which Vp =
{0, . . . , p−1}, and, for a ∈ Vp−{0}, the vertex a is connected to a+1 mod p, to a−1 mod p
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and to its multiplicative inverse a−1 mod p. The vertex 0 is connected to 1, to p − 1, and
has a self-loop. Counting self-loops, the graph is 3-regular: it is the union of a cycle over
Vp and of a matching over the p− 3 vertices Vp − {0, 1, p− 1}; the vertices 0, 1, p− 1 have
a self-loop each. There is a constant h > 0 such that, for each p, the graph Gp has edge
expansion at least h. Unfortunately, no elementary proof of this fact is known. The graph
G59 is shown in the picture below.

Constructions based on the zig-zag graph product, which we shall see next, are more com-
plicated to describe, but much simpler to analyze.

We begin by describing a building block in the construction, which is also an independently
interesting construction: a family of expanders with polylogarithmic degree, which have
both a very simple description and a very simple analysis.
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17.1 Expanders of Logarithmic Degree

Let p be a prime and t < p. We’ll construct a p2-regular multigraph LDp,t with pt+1 vertices.
The vertex set of the graph will be the (t+ 1)-dimensional vector space Ft+1

p over Fp.

For each vertex x ∈ Ft+1
p , and every two scalars a, b ∈ F, we have the edges (x, x +

(b, ab, a2b, . . . , atb).

In other words, the graph LDp,t is a Cayley graph of the additive group of Ft+1
p , constructed

using the generating multiset

S := {(b, ab, . . . , atb) : a, b ∈ Ft+1
p }

Note that the generating set is symmetric, that is, if s ∈ S then −s ∈ S (with the same
multiplicity), and so the resulting multigraph is undirected.

Let Ap,t be the adjacency matrix of LDp,t and Lp,t := I − p−2Ap,t be the normalized
Laplacian matrix. We will prove the following bound on the eigenvalues of Lp,t.

Theorem 17.2 For every prime p and every t < p, if we let 0 = λ1 ≤ λ2 ≤ · · ·λn be the
eigenvalues of M with multiplicities, then, for every i ∈ {2, . . . , n}

1− t

p
≤ λi ≤ 1

For example, setting t = bp/2c gives us a family of graphs such that λ2 ≥ 1/2 for each
graph in the family, and hence φ(G) ≥ 1/4, and the number of vertices is pp/2, while the
degree is p2, meaning the degree is O((log n/ log log n)2).

Proof: We will compute the eigenvalues of the adjacency matrix of Ap,t, and prove that,
except the largest one which is p2, all the others are non-negative and at most pt.

Recall our characterization of the eigenvalues of the adjacency matrix of a Cayley multigraph
Cay(Γ, S) of an abelian group Γ with generating multiset S: we have one eigenvector for
each character χ of the group, and the corresponding eigenvalue is

∑
s∈S χ(s).

What are the characters of the additive group of Ft+1
p ? It is the product of t+1 copies of the

additive group of Fp, or, equivalently, the product of t+ 1 copies of the cyclic group Z/pZ.
Following our rules for constructing the character of the cyclic group and of products of
groups, we see that the additive group of Ft+1

p has one character for each (c0, . . . , ct) ∈ Ft+1
p ,

and the corresponding character is

χc0,...,ct(x0, . . . , xt) := ω
∑t
i=0 cixi

where
ω := e

2πi
p

Thus, for each (c0, . . . , ct) ∈ Fpt , we have an eigenvalue
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λc0,...,ct :=
∑
a,b∈Fp

ω
∑t
i=0 ciba

i

When (c0, . . . , ct) = (0, . . . , 0) then the corresponding character is always equal to one, and
the corresponding eigenvalue is p2.

Now consider any (c0, . . . , ct) 6= (0, . . . , 0), and define the polynomial q(x) =
∑t

i=0 cix
i ∈

Fp[x]. Note that it is a non-zero polynomial of degree at most t, and so it has at most t
roots. The eigenvalue corresponding to (c0, . . . , ct) is

λc0,...,ct =
∑
a,b∈Fp

ω
∑t
i=0 b·q(a)

=
∑

a:q(a)=0

∑
b

ω0 +
∑

a:q(a)6=0

∑
b

ωb·q(a)

= p · |{a ∈ Fp : q(a) = 0}|

where we use the fact that, for every q 6= 0, the sum
∑

b ω
b·q equals zero, since it is the sum

of the values of the non-trivial character x→ ωx·q, and we proved that, for every non-trivial
character, the sum is zero.

In conclusion, we have

0 ≤ λc0,...,ct ≤ pt

�

17.2 The Zig-Zag Graph Product

Given a d-regular graph G with adjacency matrix A, if λ1 ≥ λ2 ≥ . . . ≥ λn are the
eigenvalues of A with multiplicities we define

λ(G) := max
i=2,...,n

{|λi|}

In particular, λ(G) ≥ λ2, and if we are able to construct a family of graphs such that
λ(G) is at most a fixed constant bounded away from one times d, then we have a family of
expanders. (Our construction will be inductive and, as often happens with inductive proofs,
it will be easier to maintain this stronger property than the property that λ2 is bounded
away from one.)

Given graphs G and H of compatible sizes, with small degree and large edge expansion, the
zig zag product G z©H is a method of constructing a larger graph also with small degree
and large edge expansion.

If:
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• G a D-regular graph on n vertices, with λ(G) ≤ αD

• H a d-regular graph on D vertices, with λ(H) ≤ βd

Then:

• G z©H a d2-regular graph on nD vertices, with λ(G z©H) ≤ (α+ β + β2)d2.

We will see the construction and analysis of the zig zag product in the next lecture.

For the remainder of today, we’ll see how to use the zig zag product to construct arbitrarily
large graphs of fixed degree with large edge expansion.

Fix a large enough constant d. (1369 = 372 will do.) Construct a d-regular graph H on d4

vertices with λ2(H) ≤ d/5. (For example LD37,7 is a degree 372 graph on 37(7+1) = (372)4

vertices with λ2 ≤ 37× 7 < 372/5.)

For any graph G, let G2 represent the graph on the same vertex set whose edges are the
paths of length two in G. Thus G2 is the graph whose adjacency matrix is the square of
the adjacency matrix of G. Note that if G is r-regular then G2 is r2-regular

Using the H from above we’ll construct inductively, a family of progressively larger graphs,
all of which are d2-regular and have λ ≤ d2/2.

Let G1 = H2. For k ≥ 1 let Gk+1 = (G2
k) z©H.

Theorem 17.3 For each k ≥ 1, Gk has degree d2 and λ(Gk) ≤ d2/2.

Proof: We’ll prove this by induction.
Base case: G1 = H2 is d2-regular. Also, λ(H2) = (λ(H))2 ≤ d2/25.

Inductive step: Assume the statement for k, that is, Gk has degree d2 and λ(Gk) ≤ d2/2.
Then G2

k has degree d4 = |V (H)|, so that the product (G2
k) z©H is defined. Moreover,

λ(G2
k) ≤ d4/4. Applying the construction, we get that Gk+1 has degree d2 and λ(Gk+1) ≤

(1
4 + 1

5 + 1
25)d2 = 46

100d
2 This completes the proof. �

Finally note that Gk has d4k vertices.
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Chapter 18

Analysis of the zig-zag graph product

In which we analyze the zig-zag graph product.

In the previous lecture, we claimed it is possible to “combine” a d-regular graph on D
vertices and a D-regular graph on N vertices to obtain a d2-regular graph on ND vertices
which is a good expander if the two starting graphs are. Let the two starting graphs be
denoted by H and G respectively. Then, the resulting graph, called the zig-zag product of
the two graphs is denoted by G z©H.

We will use λ(G) to denote the eigenvalue with the second-largest absolute value of the
normalized adjacency matrix 1

dAG of a d-regular graph G. If 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2
are the eigenvalues of the normalized Laplacian of G, then λ(G) = max{1− λ2, λn − 1}.
We claimed that if λ(H) ≤ b and λ(G) ≤ a, then λ(G z©H) ≤ a + 2b + b2. In this lecture
we shall recall the construction for the zig-zag product and prove this claim.

18.1 Replacement Product and Zig-Zag Product

We first describe a simpler product for a “small” d-regular graph on D vertices (denoted
by H) and a “large” D-regular graph on N vertices (denoted by G). Assume that for each
vertex of G, there is some ordering on its D neighbors. Then we construct the replacement
product (see figure) G r©H as follows:

• Replace each vertex of G with a copy of H (henceforth called a cloud). For v ∈
V (G), i ∈ V (H), let (v, i) denote the ith vertex in the vth cloud.

• Let (u, v) ∈ E(G) be such that v is the i-th neighbor of u and u is the j-th neigh-
bor of v. Then ((u, i), (v, j)) ∈ E(G r©H). Also, if (i, j) ∈ E(H), then ∀u ∈
V (G) ((u, i), (u, j)) ∈ E(G r©H).

Note that the replacement product constructed as above has ND vertices and is (d + 1)-
regular.
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18.2 Zig-zag product of two graphs

Given two graphs G and H as above, the zig-zag product G z©H is constructed as follows
(see figure):

• The vertex set V (G z©H) is the same as in the case of the replacement product.

• ((u, i), (v, j)) ∈ E(G z©H) if there exist ` and k such that ((u, i)(u, `), ((u, `), (v, k))
and ((v, k), (v, j)) are in E(G r©H) i.e. (v, j) can be reached from (u, i) by taking a
step in the first cloud, then a step between the clouds and then a step in the second
cloud (hence the name!).
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It is easy to see that the zig-zag product is a d2-regular graph on ND vertices.

Let M ∈ R([N ]×[D])×([N ]×[D]) be the normalized adjacency matrix of G z©H. Using the fact
that each edge in G r©H is made up of three steps in G r©H, we can write M as BAB, where

B[(u, i), (v, j)] =

{
0 if u 6= v
1
d if u = v and {i, j} ∈ H

And A[(u, i), (v, j)] = 1 if u is the j-th neighbor of v and v is the i-th neighbor of u, and
A[(u, i), (v, j)] = 0 otherwise.

Note that A is the adjacency matrix for a matching and is hence a permutation matrix.

18.3 A Technical Preliminary

We will use the following fact. Suppose that M = 1
dAG is the normalized adjacency matrix

of a graph G. Thus the largest eigenvalue of M is 1, with eigenvector 1; we have

λ(G) = max
x⊥1

|xTMx|
||x||2

= max
x⊥1

||Mx||
||x||

(18.1)

which is a corollary of the following more general result. Recall that a vector space S ⊆ Rn
is an invariant subspace for a matrix M ∈ Rn×n if Mx ∈ S for every x ∈ S.

Lemma 18.1 Let M be a symmetric matrix, and S be a k-dimensional invariant subspace
for M . Thus, (from the proof of the spectral theorem) we have that S has an orthonormal
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basis of eigenvectors; let λ1 ≤ · · · ≤ λk be the corresponding eigenvalues with multiplicities;
we have

max
i=1,...k

|λi| = max
x∈S

|xTMx|
||x||2

= max
x∈S

||Mx||
||x||

Proof: If the largest eigenvalue in absolute value is λk, then

max
i=1,...k

|λi| = λk = max
x∈S

xTMx

||x||2

and if it is −λ1 (because λ1 is negative, and −λ1 > λn)

max
i=1,...k

|λi| = −λ1 = −min
x∈S

xTMx

||x||2
= max

x∈S
−xTMx

||x||2

so we have

max
i=1,...k

|λi| ≤ max
x∈S

|xTMx|
||x||2

(18.2)

From Cauchy-Schwarz, we have

|xTMx| ≤ ||x|| · ||Mx||

and so

max
x∈S

|xTMx|
||x||2

≤ max
x∈S

||Mx||
||x||

(18.3)

Finally, if x1, . . . ,xk is the basis of orthonormal eigenvectors in S such that Mxi = λi, then,
for every x ∈ S, we can write x =

∑
i aixi and

||Mx|| = ||
∑
i

λiaixi|| =
√∑

i

λ2
i a

2
i ≤ max

i=1,...,k
|λi| ·

√∑
i

a2
i = max

i=1,...,k
|λi| · ||x||

so

max
x∈S

||Mx|
||x||

≤ max
i=1,...,k

|λi| (18.4)

and the Lemma follows by combining (18.2), (18.3) and (18.4). �

18.4 Analysis of the zig-zag Product

Theorem 18.2 Let G be a D-regular graph with n nodes, H be a d-regular graph with D
nodes, and let a := λ(G), b := λ(H), and let the normalized adjacency matrix of G z©H be
M = BAB where A and B are as defined in Section 18.1.

Then λ(G z©H) ≤ a+ b+ b2
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Proof: Let xRn×D be such that x ⊥ 1. We refer to a set of coordinates of x corresponding
to a copy of H as a “block” of coordinate.

We write x = x||+ x⊥, where x|| is constant within each block, and x⊥ sums to zero within
each block. Note both x|| and x⊥ are orthogonal to 1, and that they are orthogonal to each
other.

We want to prove
|xTMx|
||x||2

≤ a+ b+ b2 (18.5)

We have (using the fact that M is symmetric)

|xTMx| =≤ |xT||Mx|||+ 2|xT||Mx⊥|+ |xT⊥Mx⊥|

And it remains to bound the three terms.

1. |xT||Mx||| ≤ a||x||||2

Because, after writing M = BAB, we see that Bx|| = x||, because B is the same

as In ⊗
(

1
dAH

)
, the tensor product of the identity and of the normalized adjacency

matrix of H. The normalized adjacency matrix of H leaves a vector parallel to all-ones
unchanged, and so B leaves every vector that is constant in each block unchanged.

Thus

|xT||Mx||| = |xT||Ax||

Let y be the vector such that yv is equal to the value that x|| has in the block of v.
Then

|xT||Ax||| = 2
∑

{(v,i),(w,j)}∈EG z©H

yvyw = yTAGy = aD||y||2 ≤ a||x||||2

because y ⊥ 1 and ||y||2 = 1
D ||x||||

2

2. |xT⊥Mx⊥| ≤ b2||x⊥||2 Because, from Cauchy-Schwarz and the fact that permutation
matrices preserve length, we have

|xT⊥BABx⊥| ≤ ||Bx⊥|| · ||ABx⊥|| = ||Bx⊥||2

Now let us call xv⊥ the restriction of x⊥ to coordinates of the form (v, i) for i =
1, . . . , D. Then each xv⊥ is orthogonal to the all-one vector and AHxv⊥ ≤ db||xv⊥||, so

||Bx⊥||2 =
∑
v

||d−1AHxv⊥||2 ≤
∑
v

b2||xv⊥||2 = b2||x⊥||2

3. 2|xT||Mx⊥| ≤ b||x||2
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Because, from Cauchy-Schwarz, the fact that Bx|| = x|| and the fact that permutation
matrices preserve length, we have

|xT||BABx⊥| ≤ ||Bx|||| · ||ABx⊥|| = ||x|||| · ||Bx⊥||

and we proved above that
||Bx⊥|| ≤ b||x⊥||

so

|xT||BABx⊥| ≤ b · ||x|||| · ||x⊥|| ≤
b

2
(||x||||2 + ||x⊥||2) =

b

2
||x||2

�
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Chapter 19

Algebraic construction of expanders

In which we present an algebraic construction of expanders.

19.1 The Marguli-Gabber-Galil Expanders

We present a construction of expander graphs due to Margulis, which was the first explicit
construction of expanders, and its analysis due to Gabber and Galil. The analysis presented
here includes later simplifications, and it follows an exposition of James Lee.

For every n, we construct graphs with n2 vertices, and we think of the vertex set as Zn×Zn,
the group of pairs from {0, . . . , n−1}×{0, . . . , n−1} where the group operation is coordinate-
wise addition modulo n.

Define the functions S(a, b) := (a, a + b) and T (a, b) := (a + b, b), where all operations are
modulo n. Then the graph Gn(Vn, En) has vertex set Vn := (Z/nZ×Z/nZ) and the vertex
(a, b) is connected to the vertices

(a+ 1, b), (a− 1, b), (a, b+ 1), (a, b− 1), S(a, b), S−1(a, b), T (a, b), T−1(a, b)

so that Gn is an 8-regular graph. (The graph has parallel edges and self-loops.)

We will prove that there is a constant c > 0 such that λ2(Gn) ≥ c for every n.

The analysis will be in four steps, and it will refer to certain infinite “graphs.”

We define an infinite family of graphs Rn, such that the vertex set of Rn is (R/nZ×R/nZ),
that is, every vertex of Rn is a pair (x, y), where 0 ≤ x < n and 0 ≤ y < n, and we think
of x and y as elements of the group R/nZ in which we do addition modulo n. Every vertex
of Rn is connected to the vertices

S(x, y), S−1(x, y), T (x, y), T−1(x, y)
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and is 4-regular. For each of these graphs, we will define a “spectral gap” λ2(Rn); we put
“spectral gap” in quotes because, although it is actually the second smallest eigenvalue
of a Laplacian operator, we will define it purely formally as the minimum of a certain
optimization problem.

We will also define the graph Z, whose vertex set is Z × Z − {(0, 0}, and such that each
vertex (a, b) is connected to

S(a, b), S−1(a, b), T (a, b), T−1(a, b)

so that Z is also 4-regular. We will define a “spectral gap” λ1(Z), again purely formally as
the infimum of a certain expression, although it is the infimum of the spectrum of a certain
Laplacian operator. We will also define an “edge expansion” φ(Z) of Z.

The proof of the expansion of Gn will proceed by establishing the following four facts:

1. λ2(Gn) ≥ 1
3λ2(Rn)

2. λ2(Rn) ≥ λ1(Z)

3. φ(Z) ≤
√

2λ1(Z)

4. φ(Z) ≥ 1
7

The first step will be a discretization argument, showing that a test vector of small Rayleigh
quotient for Gn can be turned into a test function of small Rayleigh quotient for Rn. The
second step is the most interesting and unexpected part of the proof; we will not spoil the
surprise of how it works. The third step is proved the same way as Cheeger’s inequality.
The fourth step is just a careful case analysis.

19.2 First Step: The Continuous Graph Rn

Let `2([0, n)2) be set of functions f : [0, n)2 → R such that
∫

[0,n)2(f(x, y))2dxdy is well
defined and finite. Then we define the following quantity, that we think of as the spectral
gap of Rn:

λ2(Rn) := inf
f∈`2([0,n)2) :

∫
[0,n)2 f=0

∫
[0,n)2 |f(x, y)− f(S(x, y))|2 + |f(x, y)− f(T (x, y))|2dxdy

4
∫

[0,n)2(f(x, y))2dxdy

We could define a Laplacian operator and show that the above quantity is indeed the second
smallest eigenvalue, but it will not be necessary for our proof.

We have the following bound.

Theorem 19.1 λ2(Gn) ≥ 1
3 · λ2(Rn).
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Proof: Let f be the function such that

λ2(G) =

∑
c∈Z2

n
|f(c)− f(S(c))|2 + |f(c)− f(T (c))|2 + |f(c)− f(c+ (0, 1))|2 + |f(c)− f(c+ (1, 0))|2

8
∑

c∈Z2
n
f2(c)

For a point (x, y) ∈ [0, n)2, define bx, yc := (bxc, byc). We extend f to a function f̃ :
[0, n)2 → R by defining

f̃(z) := f(bzc)

This means that we tile the square [0, n)2 into unit squares whose corners are integer-
coordinate, and that f̃ is constant on each unit square, and it equals the value of f at the
left-bottom corner of the square.

It is immediate to see that ∫
[0,n)2

f̃2(z)dz =
∑
c∈Z2

n

f2(c)

and so, up to a factor of 2, the denominator of the Rayleigh quotient of f is the same as
the denominator of the Rayleigh quotient of f̃ .

It remains to bound the numerators.

Observe that for every z ∈ [0, 1)2, we have that bS(z)c equals either S(bzc) or S(bzc)+(0, 1),
and that floor(T (z)) equals either T (bzc) or T (bzc)+(1, 0). The numerator of the Rayleigh
quotient of f̃ is

∑
c=(a,b)∈Z2

n

∫
[a,a+1)×[b,b+1)

|f̃(z)− f̃(S(z))|2 + |f̃(z)− f̃(T (z))|2dz

=
1

2

∑
c∈Z2

n

|f(c)−f(S(c))|2+|f(c)−f(S(c)+(0, 1))|2+|f(c)−f(T (c))|2+|f(c)−f(T (c)+(1, 0))|2

because for a (x, y) randomly chosen in the square [a, a+ 1)× [b, b+ 1), there is probability
1/2 that bx+ yc = bxc+ byc and probability 1/2 that bx+ yc = bxc+ byc+ 1.

Now we can use the “triangle inequality”

|α− β|2 ≤ 2|α− γ|2 + 2|γ − β|2

to bound the above quantity

≤ 1

2

∑
c∈Z2

n

|f(c)− f(S(c))|2+

2|f(c)− f(c+ (0, 1))|2 + 2|f(c+ (0, 1))− f(S(c) + (0, 1))|2+

|f(c)− f(T (c))|2+

2|f(c)− f(c+ (1, 0))|2 + 2|f(c+ (1, 0))− f(T (c) + (1, 0))|2
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which simplifies to

=
1

2

∑
c∈Z2

n

3|f(c)−f(S(c))|2+3|f(c)−f(T (c))|2+2|f(c)−f(c+(0, 1))|2+2|f(c)−f(c+(1, 0))|2

which is at most 3/2 times the numerator of the Rayleigh quotient of f . �

19.3 Second Step: The Countable Graph

We now define the graph Z of vertex set Z×Z−{(0, 0)}, where each vertex (a, b) is connected
to

(a, a+ b), (a, a− b), (a+ b, a), (a− b, a)

Note

For a d-regular graph G = (V,E) with an countably infinite set of vectors, define `2(V ) to
be the set of functions f : V → R such that

∑
v∈V f

2(v) is finite, and define the smallest
eigenvalue of G as

λ1(G) := inf
f∈`2(V )

∑
(u,v)∈V |f(u)− f(v)|2

d
∑

v f
2(v)

So that

λ1(Z) := inf
f∈`2(Z×Z−{(0,0)})

∑
a,b |f(a, b)− f(a, a+ b)|2 + |f(a, b)− f(a+ b, a)|2

4
∑

a,b f
2(a, b)

We want to show the following result.

Theorem 19.2 For every n, λ2(Rn) ≥ λ1(Z).

Proof: This will be the most interesting part of the argument. Let f ∈ `2([0, n)2) be any
function such that

∫
f = 0, we will show that the Fourier transform f̂ of f has a Rayleigh

quotient for Z that is at most the Rayleigh quotient of f for Rn.

First, we briefly recall the definitions of Fourier transforms. If f : [0, n)2 → R is such that∫
z∈[0,n)2

f2(z)dz <∞

then we can write the linear combination

f(z) =
∑
c∈Z×Z

f̂(c) · χc(z)
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where the basis functions are

χa,b(x, y) =
1

n
e2πi·(ax+by)

and the coefficients are

f̂(c) = 〈f, χa,b〉 :=

∫
[0,n)2

f(z)χc(z)dz

The condition
∫
f = 0 gives

f̂(0, 0) = 0

and the Parseval identity gives∑
c 6=(0,0)

f̂2(c) =
∑
c

f̂2(c) =

∫
f2(z)dz

and so we have that the denominator of the Rayleigh quotient of f for Rn and of f̂ for Z
As usual, the numerator is more complicated.

We can break up the numerator of the Rayleigh quotient of f as∫
s2(z)dz +

∫
t2(z)dz

where s(z) := f(z)−f(S(z)) and t(z) := f(z)−f(T (z)), and we can use Parseval’s identity
to rewrite it as ∑

c

ŝ2(c) + t̂2(c)

=
∑
c

|f̂(c)− (̂f ◦ S)(c)|2 + |f̂(c)− ̂(f ◦ T )(c)|2

The Fourier coefficients of the function (f ◦ S)(z) = f(S(z)) can be computed as

(̂f ◦ S)(a, b) =
1

n

∫
f(S(x, y))e2πi(ax+by)

=
1

n

∫
f(x, x+ y)e2πi(ax+by)

=
1

n

∫
f(x, y′)e2πi(ax+by′−bx)

= f̂(a− b, b)

where we used the change of variable y′ ← x+ y.

Similarly, ̂(f ◦ T )(a, b) = f̂(a, b−a). This means that the numerator of the Rayleigh quotient
of f for Rn is equal to the numerator of the Rayleigh quotient of f̂ for Z. �
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19.4 Third Step: A Cheeger Inequality for countable graphs

Define the edge expansion of a d-regular graph G = (V,E) with a countably infinite set of
vertices as

φ(G) = inf
A⊆V,A finite

E(A, Ā)

d|A|

Note that the edge expansion can be zero even if the graph is connected.

Theorem 19.3 (Cheeger inequality for countable graphs) For every graph G = (V,E)
with a countably infinite set of vertices we have

φ(G) ≤
√

2 · λ1(G)

Proof: This is similar to the proof for finite graphs, with the simplification that we do not
need to worry about constructing a set containing at most half of the vertices.

Let f ∈ `2(Z2) be any function. We will show that φ is at most
√

2r where

r :=

∑
(u,v)∈E |f(u)− f(v)|2

d
∑

v∈V f
2(v)

is the Rayleigh quotient of f .

For every threshold t ≥ tmin := infv∈V f
2(v), define the set St ⊆ V as

St := {v : f2(v) > t}

and note that each set is finite because
∑

v f
2(v) is finite. We have, for t > tmin,

φ(G) ≤ E(St, S̄t)

d|St|

and, for all t ≥ 0
|St| · φ(G) ≤ dE(St, S̄t)

Now we compute the integral of the numerator and denominator of the above expression,
and we will find the numerator and denominator of the Rayleigh quotient r.∫ ∞

0
|St|dt =

∑
v∈V

∫ ∞
0

If2(v)>tdt =
∑
v∈V

f2(v)

and ∫ ∞
0

E(St, S̄t)dt =
∑

(u,v)∈E

∫ ∞
0

It between f2(u),f2(v)dt =
∑
(u,v)

|f2(u)− f2(v)|

Which means
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φ ≤
∑

u,v |f(u)− f(v)|2

d
∑

v f
2(v)

Now we proceed with Cauchy Schwarz:

∑
(u,v)∈E

|f2(u)− f2(v)|

=
∑

(u,v)∈E

|f(u)− f(v)| · |f(u) + f(v)|

≤
√ ∑

(u,v)∈E

|f(u)− f(v)|2 ·
√ ∑

(u,v)∈E

|f(u) + f(v)|2

≤
√ ∑

(u,v)∈E

|f(u)− f(v)|2 ·
√ ∑

(u,v)∈E

2f2(u) + 2f2(v)

=

√ ∑
(u,v)∈E

|f(u)− f(v)|2 ·
√∑
v∈V

2df(v)2

And we have

φ ≤

√∑
(u,v)∈E |f(u)− f(v)|2 ·

√
2d

d
√∑

v∈V f(v)2
=
√

2 · r

�

19.5 Expansion of Z

After all these reductions, we finally come to the point where we need to prove that some-
thing is an expander.

Theorem 19.4 φ(Z) ≥ 1
7

Proof: Let A be a finite subset of Z× Z− {(0, 0}.
Let A0 be the set of elements of A that have one 0 coordinate. Let A1, A2, A3, A4 be the set
of elements of A with nonzero coordinate that belong to the 1st, 2nd, 3rd and 4th quadrant.
(Starting from the quadrant of points having both coordinates positive, and numbering the
remaining ones clockwise.)

Claim 19.5 E(A−A0, Ā) ≥ |A−A0| = |A| − |A0|.
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Proof: Consider the sets S(A1) and T (A1); both S() and T () are permutations, and
so |S(A1)| = |T (A1)| = |A1|. Also, S(A1) and T (A1) are disjoint, because if we had
(a, a + b) = (a′ + b′, b′) then we would have b = −a′ while all the coordinates are strictly
positive. Finally, S(A1) and T (A1) are also contained in the first quadrant, and so at
least |A1| of the edges leaving A1 lands outside A. We can make a similar argument in
each quadrant, considering the sets S−1(A2) and T−1(A2) in the second quadrant, the sets
S(A3) and T (A3) in the third, and S−1(A4) and T−1(A4) in the fourth. �

Claim 19.6 E(A0, Ā) ≥ 4|A0| − 3|A−A0| = 7|A0| − 3|A|

Proof: All the edges that have one endpoint in A0 have the other endpoint outside of A0.
Some of those edges, however, may land in A−A0. Overall, A−A0 can account for at most
4|A−A0| edges, and we have already computed that at least |A−A0| of them land into Ā,
so A−A0 can absorb at most 3|A−A0| of the outgoing edges of A0. �

Balancing the two equalities (adding the first plus 1/7 times the second) gives us the theo-
rem. �

128



Chapter 20

Probabilistic construction of expanders

In which we present a probabilistic construction of expanders.

We have seen a combinatorial construction of expanders, based on the zig-zag graph product,
and an algebraic one. Today we see how to use the probabilistic method to show that
random graphs, selected from an appropriate probability distribution, are expanders with
high probability.

A non-trivial part of today’s lecture is the choice of distribution. For us, a family of ex-
panders is a family of regular graphs of fixed degree, but if we pick a graph at random
according to the Erdös-Renyi distribution, selecting each pair {u, v} to be an edge inde-
pendently with probability p, then we do not get a regular graph and, indeed, not even
a bounded-degree graph. (Even when p = O(1/n), ensuring constant average degree, the
maximum degree is of the order of log n/ log logn.)

This means that we have to study distributions of graphs in which there are correlations
between edges, which are often difficult to reason about.

We could study the expansion of random d-regular graphs, but that is a particularly chal-
lenging distribution of graphs to analyze. Instead, the following distributions over d-regular
graphs are usually considered over a vertex set V :

• Pick at random d perfect matching over V , and let E be their union

• Pick at random d/2 permutations f1, . . . , f d
2

: V → V , and have an edge for each pair

{v, f(v)}, for i = 1, . . . , d/2.

The first method is applicable when n is even, and the second method is applicable when
d is even. (When n and d are both odd, it is not possible to have an n-vertex d-regular
graph, because the number of edges in such a graph is dn/2.)

We will study the expansion of graphs generated according to the first distribution, and
show that there exists an integer d and a c > 0, such that a random d regular graph on n
vertices has probability at least 1− 1/nΩ(1) of having edge expansion at least c.
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In particular, we will show that for d = 18, the probability that a random 18-regular graph
has expansion ≥ 1

108 is at least 1 − O(1/n2). Our bounds will be very loose, and much
tighter analyses are possible.

We have to show that, with high probability over the choice of the graph, every set of
vertices S ⊆ V with |S| ≤ |V |/2 has at least c · d · |S| edges leaving it.

The common approach to prove that a random object satisfies a certain collection of prop-
erties is to prove that each property holds with high probability, and then to use a union
bound to show that all properties are simultaneously true with high probability. For a
d-regular graph to have expansion c, we want every set S of size ≤ n/2 to have at least
cd|S| outgoing edges; a naive approach would be to show that such a property holds for
every fixed set except with probability at most << 1

2n , and then take a union bound over
all 2n−1 sets of size ≤ n/2.

Unfortunately the naive approach does not work, because the probability that small sets
fail to expand is much higher than 2n−1. For example, the probability that a fixed set of
d+ 1 nodes form a clique is at least of the order of 1/nd

2
. Fortunately, the number of small

sets is small, and if the probability of a fixed set of size k being non-expanding is, say, at
most 1/

(
n
k

)2
, then, by taking a union bound over all sets of size k, the probability that there

is a non-expanding set of size k is at most 1/
(
n
k

)
, and then by taking a union bound over

all sizes k we get that the probability that there is a non-expanding set is at most inverse
polynomial in n.

Let Γ(S) denote the set of nodes that have at least a neighbor in S. If |Γ(S)− S| ≤ t, then
there are most t edges leaving from S. In order to upper bound the probability that there
are ≤ 1

2 |S| edges leaving S, we will upper bound the probability that |Γ(S)− S| ≤ 1
2 |S|.

It will be convenient to have the following model in mind for how a random perfect matchings
is chosen. Let v1, . . . , vn be an arbirtary ordering of the vertices such that S = {v1, . . . , vk},
then the following algorithm samples a random perfect matching over V :

• M := ∅, C := ∅

• while C 6= V

– let v be the smallest-index unmatched vertex in V − C
– let w be a randomly selected unmatched vertex in V − (C ∪ {v})
– M := M ∪ {{v, w}}; C := C ∪ {v, w}

• return M

It is easy to see that the above algorithm has (n − 1) · (n − 3) · · · 3 · 1 possible outputs,
each equally likely, each distinct, and that (n − 1) · (n − 3) · · · 3 is also the number of
perfect matchings over a set of n vertices, so that the algorithm indeed samples a uniformly
distributed perfect matching.

Now, fix a set S of size k ≤ n/2 and a set T ⊆ V − S of size k/6. The probability that, in
a random matching, the vertices of S are all matched to vertices in S ∪ T is at most the
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probability that, during the first k/2 executions of the “while” loop, the randomly selected
vertex vj is in S ∪ T .

For i = 1, . . . , k/2, conditioned on the first i− 1 iterations picking a vertex w ∈ S ∪ T , the
probability that this happens on the i-th iteration is the number of unmatched vertices in
(S ∪T )− (C ∪{v}) which is 7

6k− 2i+ 1, divided by the total number of unmatched vertices
in V − (C ∪ {v}), which is n− 2i+ 1.

Thus, the probability that, in a random matching, all vertices of S are matched to vertices
in S ∪ T is at most

k/2∏
i=1

7
6k − 2i+ 1

n− 2i+ 1
<

k/2∏
i=k/3+1

.5k

.5n
=

(
k

n

)k/6
when we pick G as the union of d random matchings, the probability that all the neighbors
of S are in S ∪ T is at most the above bound raised to the power of d:

Pr[Γ(S) ⊆ S ∪ T ] ≤
(
k

n

)dk/6
and taking a union bound over all choices of S of size k and all choices of T of size k/6, we
have

Pr[∃S such that |S| = k and φ(S) ≤ 1/6d] ≤

Pr[∃S such that |S| = k and |Γ(S)− S| ≤ k/6]

≤
(
k

n

)dk/6
·
(
n

k/6

)
·
(
n

k

)

≤
(
k

n

)dk/6
·
(
n

k

)2

≤
(
n

k

)−d/6
·
(
n

k

)2

Now, for d = 18, taking a union bound over all k ≥ 2 (in a graph without self-loops, every
singleton set is expanding), we have

Pr

[
φ(G) ≤ 1

18 · 6

]
≤

n/2∑
k=2

1(
n
k

) ≤ O( 1

n2

)
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Chapter 21

Properties of Expanders

In which we prove properties of expander graphs.

21.1 Quasirandomness of Expander Graphs

Recall that if G is a d-regular graph, and A is its adjacency matrix, then, if we call λ1 ≥
λ2 ≥ . . . ≥ λn the eigenvalues of A with repetitions, we are interested in the parameter
σ2(G) := maxi=2,...,n{|λi|}, and we have

σ2(G) =

∥∥∥∥A− d

n
J

∥∥∥∥
where J is the matrix with a one in each entry, and || · || is the matrix norm ||M || :=
maxx,||x||=1 ||Mx||.
Our fist result today is to show that, when σ2(G) is small, the graph G has the following
quasirandomness property: for every two disjoint sets S, T , the number of edges between
S and T is close to what we would expect in a random graph of average degree d, that is,
approximately d

|V | |S||T |.

For two (possibly overlapping) sets of vertices S, T , we define edgesG(S, T ) to be the number
of edges with one endpoint in S and one endpoint in T , with edges having both endpoints
in S ∩ T , if any, counted twice.

Lemma 21.1 (Expander Mixing Lemma) Let G = (V,E) be a d-regular graph, and let
S and T be two disjoint subsets of vertices. Then∣∣∣∣edgesG(S, T )− d

|V |
· |S| · |T |

∣∣∣∣ ≤ σ2(G) ·
√
|S| · |T |
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Proof: We have

edgesG(S, T ) = 1>SA1T

and
|S||T | = 1>S J1T

so ∣∣∣∣edgesG(S, T )− d

|V |
· |S| · |T |

∣∣∣∣
= ·
∣∣∣∣1>SA1T −

d

|V |
1>S J1T

∣∣∣∣
= ·
∣∣∣∣1>S (A− d

|V |
J

)
1T

∣∣∣∣
≤ ||1S || ·

∥∥∥∥A− d

|V |
J

∥∥∥∥ · ‖1T ‖
=
√
|S| · σ2(G) ·

√
|T |

�

Note that, for every disjoint S, T , we have
√
|S| · |T | ≤ |V |/2, and so the right-hand side

in the expander mixing lemma is at most σ2(G)
d · |E|, which is a small fraction of the total

number of edges if σ2 is small compared to d.

21.2 Random Walks in Expanders

A t-step random walk is the probabilistic process in which we start at a vertex, then we pick
uniformly at random one of the edges incident on the vertices and we move to the other
endpoint of the edge, and then repeat this process t times.

If P := 1
dA is the normalized adjacency matrix of an undirected regular graph G, then

P (u, v) is the probability that, in one step, a random walk started at u reaches v. This is
why the normalized adjacency matrix of a regular graph is also called its transition matrix.

Suppose that we start a random walk at a vertex chosen according to a probability dis-
tribution p, which we think of as a vector p ∈ RV such that p(u) ≥ 0 for every u and∑

u p(u) = 1. After taking one step, the probability of being at vertex v is
∑

u p(u)P (u, v),
which means that the probability distribution after one step is described by the vector
p> · P , and because of the symmetric of P , this is the same as Pp.

Iterating the above reasoning, we see that, after a t-step random walk whose initial vertex
is chosen according to distribution p, the last vertex reached by the walk is distributed
according to P tp.

The parameter σ2 of P t is equal to (σ2(G)/d)t, and so if G has a parameter σ2 bounded
away from d, and if t is large enough, we have that the parameter σ2 of P t is very small,
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and so P t is close to 1
nJ in matrix norm. If P t was actually equal to 1

nJ , then P t ·p would
be equal to the uniform distribution, for every distribution p. We would thus expect P t ·p
to be close to the uniform distribution for large enough t.

Before formalizing the above intuition, we need to fix a good measure of distance for distri-
butions. If we think of distributions as vectors, then a possible notion of distance between
two distributions is the Euclidean distance between the corresponding vectors. This def-
inition, however, has various shortcoming and, in particular, can assign small distance to
distributions that are intuitively very different. For example, suppose that p and q are dis-
tributions that are uniform over a set S, and over the complement of S, respectively, where
S is a set of size |V |/2. Then all the entries of p−q are ±2/n and so ||p−q|| = 2/

√
n, which

is vanishingly small even though distributions over disjoint supports should be considered
as maximally different distributions.

A very good measure is the total variation distance, defined as

max
S⊆V

∣∣∣∣∣∑
v∈S

p(v)−
∑
v∈S

q(v)

∣∣∣∣∣
that is, as the maximum over all events of the difference between the probability of the event
happening with respect to one distribution and the probability of it happening with respect
to the other distribution. This measure is usually called statistical distance in computer
science. It is easy to check that the total variation distance between p and q is precisely
1
2 · ||p − q||1. Distributions with disjoint support have total variation distance 1, which is
largest possible.

Lemma 21.2 (Mixing Time of Random Walks in Expanders) Let G be a regular graph,
and P be its normalized adjacency matrix. Then for every distribution p over the vertices
and every t, we have

||u− P tp||1 ≤
√
|V | · (σ2(G)/d)t

where u is the uniform distribution.

In particular, if t > dc
d−σ2(G) · ln

|V |
ε , then ||u− P tp||1 ≤ ε, where c is an absolute constant.

Proof: Let J̄ = J/|V | be the normalized adjacency matrix of a clique with self-loops.
Then, for every distribution p, we have J̄p = u. Recall also that σ2(G) = ||P − J̄ ||.
We have

||u− P tp||1
≤
√
|V | · ||u− P tp||

≤
√
|V | · ||J̄p− P tp||

≤
√
|V | · ||J̄ − P t|| · ||p||
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≤
√
|V | · (σ2(G)/d)t

�

The last result that we discussed today is one more instantiation of the general phenomenon
that “if σ2(G) is small then a result that is true for the clique is true, within some approx-
imation, for G.”

Suppose that we take a (t − 1)-step random walk in a regular graph G starting from a
uniformly distributed initial vertex. If G is a clique with self-loops, then the sequence
of t vertices encountered in the random walk is a sequence of t independent, uniformly
distributed, vertices. In particular, if f : V → [0.1] is a bounded function, the Chernoff-
Hoeffding bounds tell us that the empirical average of f() over the t points of the random
walk is very close to the true average of f(), except with very small probability, that is, if
we denote by v1, . . . , vt the set of vertices encountered in the random walk, we have

P

[
1

t

∑
i

f(vi) ≥ E f + ε

]
≤ e−2ε2t

where n := |V |. A corresponding Chernoff-Hoeffding bound can be proved for the case in
which the random walk is taken over a regular graph such that σ2(G) is small.

Lemma 21.3 (Chernoff-Hoeffding Bound for Random Walks in Expanders) Let G =
(V,E) be a regular graph, and (v1, . . . , vt) the distribution of t-tuples constructed by sam-
pling v1 independently, and then performing a (t− 1)-step random walk starting at v1. Let
f : V → [0, 1] be any bounded function. Then

P

[
1

t

∑
i

f(vi) ≥ E f + ε+
σ2(G)

d

]
≤ e−Ω(ε2t)

We will not prove the above result, but we briefly discuss one of its many applications.

Suppose that we have a polynomial-time probabilistic algorithm A that, on inputs of length
n, uses r(n) random bits and then outputs the correct answer with probability, say, at least
2/3. One standard way to reduce the error probability is to run the algorithm t times, using
independent randomness each time, and then take the answer that comes out a majority
of the times. (This is for problems in which we want to compute a function exactly; in
combinatorial optimization we would run the algorithm t times and take the best solutions,
and in an application in which the algorithm performs an approximate function evaluation
we would run the algorithm t times and take the median. The reasoning that follows for
the case of exact function computation can be applied to the other settings as well.)

On average, the number of iterations of the algorithms that give a correct answer is ≥ 2t/3,
and the cases in which the majority is erroneous correspond to cases in which the number of
iterations giving a correct answer is ≤ t/2. This means that the case in which the modified
algorithm makes a mistake correspond to the case in which the empirical average of t
independent 0/1 random variables deviates from its expectation by more than 2/3− 1/2 =
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1/6, which can happen with probability at most e−t/18, which becomes vanishingly small
for large t.

This approach uses t · r(n) random bits. Suppose, instead, that we consider the following
algorithm: pick t random strings for the algorithm by performing a t-step random walk
in an expander graph of degree O(1) with 2r(n) vertices and such that σ2(G) ≤ d/12, and
then take the majority answer. A calculation using the Chernoff bound for expander graphs
show that the error probability is e−Ω(t), and it is achieved using only r(n) +O(t) random
bits instead of t · r(n).
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