
OEB 242 
Midterm Review Practice Problems – Answer Key 
 
(1)  Loci, Alleles, Genotypes, Haplotypes 
 

(a) Define each of these terms.  
 
Locus – a genetic site 
Allele – a genetic variant, particular to a given genetic locus, 
segregating in a population 
Genotype – the combination of alleles observed or postulated at a 
given locus in a given individual in a population 
Haplotype – the combination of alleles across two or more loci 
observed or postulated in an individual in a population 
 

(b) We used the expression !
! , which is equal to !!

!! !!! !
 and represents 

sampling without replacement where order doesn’t matter, to calculate 
the number of heterozygotes possible in a diploid population in PS2 
#1. The formula for sampling with replacement where order doesn’t 
matter is: !!!!!

! . Use this information to give the number of possible 
genotypes in an octoploid species at a locus with 11 alleles. How many 
of these genotypes are heterozygous (in the sense that at least one of 
the eight alleles an individual carries differs from the other 7)? 

 
In these expressions, k represents the ploidy and n represents the 
number of segregating alleles (how many ways are there to put n 
objects into k slots)? So, !!!!!!

! = !"!
!"!  !!

 = 43758. There are 11 
possible ‘true homozygotes’ (i.e. individuals with all 8 of their alleles 
matching each other) so there are 43758 – 11 = 43747 possible 
heterozygotes. 

 
(c) Suppose we add to our analysis another locus with j alleles. How many 

haplotypes are possible between the two sites? 
 
Given two loci, the number of possible haplotypes is simply the product 
of the number of variants at the two sites. (The number of possible 
genotypes at either site is not relevant.) So, there are 11*j possible 
haplotypes. 
 
 
 
 
 
 
 



(2) Hardy-Weinberg and χ2 

 
(a) Suppose we have a diploid population in HWE. Define the allele and  

genotype frequencies at a biallelic site. 
 
Given alleles A and a: 
 P(A) = p 
 P(a) = q = 1-p 
 P(AA) = p2 
 P(Aa) = 2pq 
 P(aa) = q2 

 

(b) Suppose we remove half of the heterozygotes from the population. 
What will the new allele frequencies be (in terms of their frequencies in 
the first generation, p0 and q0)? 

 
If our population is of size N, then we have reduced our heterozygote 
count from 2pqN individuals to pqN individuals. Our population size is 
now N – pqN. We must take both of these things into account: 
 
P(A) = p1 = !∗  !!

!  ∗!!  !!!!  ∗!
!∗(!!!")!  

 

P(a) = q1 = !∗  !!
!  ∗!!  !!!!  ∗!
!∗(!!!")!  

 
Note that we can’t simply transform the allele frequencies, we have to 
take account of the population size, even though we removed an equal 
number of A alleles and a alleles.  
 

(c) How long will it take the population to reach a new equilibrium? What 
will the HWE values be (in terms of their frequencies in the first 
generation, p0 and q0)? 

 
Under the Hardy-Weinberg model where mating is truly random (with 
imagined infinite population size, no selection, etc. etc.) HWE only 
takes one generation to reach. So, having disturbed the population, it 
will reach a new equilibrium after one more round of random mating. 
We can simply plug our expressions for p1 and q1 into the Hardy-
Weinberg equations to get the new equilibrium values: 
 
 P(AA) = p1

2 = [!∗  !!
!  ∗!!  !!!!  ∗!
!∗(!!!"#)

]! 

 

 P(Aa) = 2p1q1 = 2* !∗  !!
!  ∗!!  !!!!  ∗!
!∗(!!!"#)  * 

!∗  !!!  ∗!!  !!!!  ∗!
!∗(!!!"#)  

 



 P(aa) = q1
2 = [!∗  !!

!  ∗!!  !!!!  ∗!
!∗(!!!"#)

]! 

 
(d) Attempt to perform and interpret a test for HWE at a biallelic site in a 

diploid population with the following genotype frequencies: P(AA) = 
.65, P(Aa) = .3, P(aa) = .05. (What information is missing that prevents 
you from doing so? Why do you need this information? Try a few 
different values and see how it affects your interpretation of your test.) 
 
Get allele frequencies from genotype frequencies: 
P(A) = p = .8 
P(a) = q = .2 
 
Get expected genotype frequencies using HWE: 
p2 = .64 
2pq = .32 
q2 = .04 
 
We can’t apply χ2 because we need to have observed and expected 
values for genotype counts; frequencies do not suffice. After all, in a 
small sample just a few individuals with unexpected genotypes can 
easily happen by chance, offsetting our genotype frequencies, 
whereas in a large sample the same proportional increase in 
individuals seems less likely under the null hypothesis.  
 
Moreover, we know that the χ2 distribution with k degrees of freedom 
represents the sum of squares of k independent standard normal 
random variables – we don’t expect the permissible deviation in 
frequency to be standard normal; but we can impose this assumption 
on the deviation in count of however many independent classes we 
have. 
 
 
If N = 100: 
 AA Aa aa 
obs 65 30 5 
exp 64 32 4 

 
χ2  = .390625 
df = (3 classes) – (1 for fixing N) – (1 for estimating p) = 1 
p = .53 (we cannot reject the null hypothesis of neutral HWE). 

 
If N = 10000: 
 AA Aa aa 
obs 6500 3000 500 
exp 6400 3200 400 



χ2  = 39.0625 
df still equals 1 
Now, p is infinitesimally small – essentially zero, and we can reject H0. 
 

 
(3) Linkage Disequilibrium 
 

(a) For two biallelic loci (A/a and B/b): 
Recall that we define the linkage disequilibrium parameter, D, such 
that P(AB) = pApB + D. It represents the deviation from expected 
haplotype frequencies assuming linkage equilibrium (i.e. complete 
independence of sites) 
Show that D = pAB*pab – paB*pAb. 

 
  P(AB) = pApB + D  
  P(ab) = papb + D (by analogy) 
  P(aB) = papB – D (because pa = 1-pA; pb = 1-pB) 
  P(Ab) = pApb – D 
   
  We can verify the given equation by plugging in these expressions: 
 
  D = [(pApB + D) * (papb + D)] – [(papB – D) * (pApb – D)] 
 
  D = [pApBpapb + D* papb + D * pApB + D2] – 
   [papBpApb – D * papB – D * pApb+ D2 ] 
 
  D = (D* papb + D * pApB) –  

(D * papB – D * pApb) 
 
  D =  D[papb +pApB + papB + pApb] 
 
  D = D[(1-pA)(1-pB) + pApB + (1-pA)pB + pA(1-pB)] 
 
  D = D, QUED ;P 
 
 

(b) Calculate and interpret D and D’ if we have P(AB) = .5, p(ab) = .05, 
p(aB) = .25, p(Ab) = .2. Do we need to know the sample size to make 
this calculation? 
 
D = (.5)(.05) – (.25)(.2) = -.025 
D’ = D/Dmin given that D is negative 
Dmin = min[-(.7*.75), -(.3*.25)] = -.075 
D’ = -.025/-.075 = .3333 
 



Thus, D is a third of its most extreme value. The negative sign simply 
reflects which allele we have chosen to define as big-A or big-B. 
 
No, these statistics are defined to be independent of sample size. 
Note, however, that sample size is often worth considering when 
making sense of LD: in small samples, rare variants tend to get lost, 
which often makes LD appear more robust than it is. 

 
(c) Calculate r2. How is this information different from the information we 

get when we calculate D’? 
 

Remember that r2 is a measure of correlation – it is not the same r that 
we used to represent the frequency of recombination (which 
determines the rate of LD decay). 
 
r2 = D2 /(pApBpapB) 
=(-.025)^2/(.7*.3*.75*.25) 
= .01587 
 
The square root of which is .125, indicating a weak correlation between 
the two sites. Thus, these mutations happened with enough time in 
between them that they don’t carry a lot of mutual information. If on the 
other hand one of the alleles (say a) represented a mutation that had 
happened much earlier in the same lineage where the b mutation had 
just occurred, then we could have different haplotype frequencies that 
would result in a higher value of r2 without necessarily having the same 
magnitude of effect on D’. This is a subtle point; see textbook pp. 84-
85 for an example. 

 
 
(4) Drift: The Wright-Fisher and Moran Models 
 

(a) Another way to think of drift in a diploid population has some features 
of both the Wright-Fisher and Moran models. In this third model, we 
have 2N timesteps per generation (a la Moran). At each timestep, we 
randomly sample one allele with replacement from the population and 
put it in our new generation (a la Wright-Fisher). 
 
On this model, what is the probability that a particular allele (i.e. only 
one copy exists in the population) has at least one copy in the next 
generation? Assume an infinite population size and give an exact 
answer. 
 (Hint: lim!→! 1+ 𝜖𝑥 !/! = 𝑒!) 
 
The probability that this allele doesn’t get chosen to reproduce at a 
given timestep is 1− !

!!
. Since each timestep is independent, the 



probability of this happening for a whole generation is (1− !
!!
)!!. 

Using the hint given, we can see that for a theoretically infinite 
population, this value, the probability of extinction, becomes 1/e. So, 
the probability of non-extinction is 1 – 1/e. 

 
(5) The Coalescent 
 

(a) What is the expected time to the first coalescent event for a sample of 
10 alleles in a population of 100? In a population of size 1000? 

 
Using the Kingman coalescent, 
E[T10] = 4N/k(k-1) = 400/(90) = 4.444 generations for N = 100 
   = 4000/(90) = 44.444 generations for N = 1000 

 
(b) Which of the two values is the more certain? 

 
Again using the Kingman coalescent, the variance on our estimate is 
!"!!

! !!!
! . Thus, a larger N gives us larger variance on our estimate of 

the time to coalescence, and we have more confidence in our estimate 
when N = 100 than when N = 1000.  

 
(6) Mutation 
 

(a) Show that, under the infinite-sites model, the expected number of 
segregating sites in a sample of n chromosomes in a diploid population 
is 𝜃 ∗ !

!
!!!
!!! .  

 
Under the infinite-sites model, each mutation happens at a new locus 
and creates a new allele. So, we can think of the expected number of 
segregating sites in terms of mutations distributed randomly on a 
coalescent tree: sum up all the branch lengths (in units of generations, 
but will be functions of the population size) and multiply by the per-
generation mutation rate, U (analogous to the per-generation, per-site 
rate, µ). 
 
We can use the Kingman coalescent to do this. Recall that Ti 
represents the expected time to the first coalescent event from a 
sample of size i. Thus, our tree will always have i branches of length Ti 
that lead up to each coalescent event, for i between n (at the leaves of 
the tree) and 2 (coalescing at the root). 

𝐸 𝑡𝑜𝑡𝑎𝑙  𝑙𝑒𝑛𝑔𝑡ℎ  𝑜𝑓  𝑡𝑟𝑒𝑒 = 𝐸( 𝑖 ∗ 𝑇!

!

!!!

) 

 



= 𝑖 ∗ 𝐸(𝑇!

!

!!!

) 

= 𝑖 ∗
!

!!!

4𝑁
𝑖(𝑖 − 1) 

= 4𝑁 ∗
1

(𝑖 − 1)

!

!!!

 

 

= 4𝑁 ∗
1
𝑖

!!!

!!!

 

 
𝐸 𝑆 = 𝑈 ∗ 𝐸 𝑡𝑜𝑡𝑎𝑙  𝑙𝑒𝑛𝑔𝑡ℎ  𝑜𝑓  𝑡𝑟𝑒𝑒  

     

= 4𝑁𝑈 ∗
1
𝑖

!!!

!!!

 

= 𝜃 ∗
1
𝑖

!!!

!!!

 

 
(b) Given the following sample of 6 chromosomes genotyped at 6 variable 

sites out of a stretch of 50bp, calculate Π. Use this information to 
estimate θ two ways. How would you use these values if you wanted to 
calculate Tajima’s D? What would the sign of Tajima’s D be, and how 
would you interpret it here?  What is the equilibrium homozygosity 
under the infinite alleles model for each of these estimates of θ? (Note 
that these estimates may disagree dramatically given our small and 
artificial sample.) 
 

A  G T A T T 
A G T C G A 
A G C C T A 
G G C C T T 
G G C C G T 
G T C C G T 
 

Π represents per-site pairwise diversity: if you picked two random 
chromosomes and compared them at a random site, what’s the 
probability that they would differ? So, we need to count how many 
mismatches there are and how many possible mismatches there are. 
 
Each site makes the following contribution: 
  9  5 8 5 9 8  mismatches 
 



for a total of 44. We are making !
!  = 15 chromosome comparisons in 

our sample set. So we have 44/15 = 2.9333 differences per sequence 
on average. (Pick a few random pairs of chromosomes and count how 
many differences there are to convince yourself that this makes 
sense). 
 
To get a per-site value, we divide by L = 50bp. We get Π = .05866. 
To estimate θ, we must remember two predictions of the infinite-sites 
model: 
 
𝐸 Π = 𝜃 (because E[T2] is 2N, thus 4N generations of evolutionary 
time separate a given pair)  
 
𝐸 𝑆 = 𝜃 ∗ !

!
!!!
!!!  (as we showed in part a) 

  
Thus, our two estimates are 𝜃! and 𝜃!.   They are, respectively, .05866 
and .0525 (using an exact value for the sum rather than the ln(n) 
approximation).  
 
Tajima’s D takes (and then normalizes) the difference 𝜃! - 𝜃!,  which 
here would be positive. This indicates a surplus of intermediate 
frequency alleles, which contribute more to the per-pairwise 
comparison number of mismatches than do rare frequency alleles.  
 
If we could extrapolate from this small sample to the population, we 
would infer shallow coalescence times for this locus (such that most 
mutations occur on shared branches of our coalescent tree). Such a 
tree structure would indicate, for example, a decrease in population 
size or balancing selection. 
 
Homozygosity is the probability that two randomly sampled alleles at a 
locus are different. Under the infinite alleles model, we can recursively 
define homozygosity as follows: 
 
 Ft = (1-µ)2( !

!!
) + (1-   !

!!
)(1-µ)2Ft-1 

 
Where the left hand term represents the probability that the two alleles 
coalesce in the preceding generation and neither have mutated, and 
the right hand term represents the probability that although they do not 
coalesce in the preceding generation, they were homozygous before 
then, and furthermore have not mutated. We set Ft = Ft-1 and treat µ 
and µ2 as approximately zero to find the equilibrium homozygosity 
value: !

!!!
 . This represents the scenario where mutation creates 

diversity at the same rate that drift removes it. 
 



𝐹!= .94459 
𝐹! = .95011 
 
The difference between these answers makes sense for our sample: 
since half of our sites are singletons, estimating 𝐹 based on per-site 
heterozygosity will lead to a larger value (you’re more likely to find a 
match if you sample two random alleles) than if we were to estimate it 
based on the number of segregating sites.  


