
1

CSE 315: Computer Organization

Sheet 5

1. Assume that the following MIPS assembly code segment is placed starting at location F4E0D2C016 in
memory and that register $s2 holds the base of A (an array of integers).

 Loop: jal Calc

 addi $s0, $s0, 1

 slt $t1, $s0, $s1

 bne $t1, $zero, Loop

 sw $t0, 16 ($s2)

 j Exit

For each of the following questions choose the one best answer. Copy the table below to your
answer sheet and put your answers in it. Do NOT copy the statements themselves.

I) What is the address of the procedure Calc in hexadecimal, if the value stored in the target

address field of the machine code of the jal instruction above is 216?

a) 00000002 b) 00000008 c) F0000002 d) F0000008 e) F4E0D2C8

II) What is the hexadecimal value stored in the address field of the machine code of the bne
instruction above?

a) -4 b) FFFC c) -16 d) FFF0 e) D2C0 f) 34B0

III) Who is responsible for calculating the value to be stored in the address field of the machine
code of the bne instruction above?

a) operating system b) compiler c) assembler d) programmer

IV) If register $s2 contains number 410 before executing the sw instruction above, what will be
the decimal store-to address?

a) 20 b) 8 c) 68

V) What is the decimal value stored in the immediate field of the machine code of the sw
instruction above?

a) 16 b) 4 c) 64

VI) If the store-to address of the sw instruction above is 4010 and register $t0 contains number
A0B0C0D016 before executing the instruction, what will be the hexadecimal byte stored at
memory address 4010 after executing the instruction?

a) A0 b) B0 c) C0 d) D0

VII) What is the addressing mode used in the j instruction above?

a) Pseudodirect b) PC-relative c) Immediate d) Register e) Displacement

VIII) Which of the followings could be the hexadecimal address of the label Exit referenced in the
operand field of the j instruction above?

a) F4E0D2C0 b) E4E0D6FA c) E4E0D6FC d) F4E0D6FA e) F4E0D6FC

Statement I II III IV V VI VII VIII

Answer d b c a a a a e

2

2. The C function on the left is assembled into the MIPS code on the right.

int compare (int x, int y) {

 if ((y - x) < 0)

 return 1;

 else

 return 0;

}

compare: sub $t0, $a1, $a0

 slt $v0, $t0, $zero

 jr $ra

a. The above function compare is modified, as shown below, to have the subtraction operation
done via a functional call to the subtract function. Assemble the two functions compare2 and
subtract into MIPS assembly code.

int compare2 (int x, int y) {

 if ((subtract(y,x) < 0)

 return 1;

 else

 return 0;

}

int subtract (int a, int b) {

 return a - b;

}

Solution:
compare2: addi $sp, $sp, –12

 sw $ra, 8 ($sp)

 sw $a1, 4 ($sp)

 sw $a0, 0 ($sp)

 add $t0, $a0,

$zero

 add $a0, $a1,

$zero

 add $a1, $t0,

$zero

 jal subtract

 slt $v0, $v0,

$zero

 lw $a0, 0 ($sp)

 lw $a1, 4 ($sp)

 lw $ra, 8 ($sp)

 addi $sp, $sp, 12

 jr $ra

subtract: sub $v0, $a0, $a1
 jr $ra

b. Trace the stack contents (stack image) before, during, and after calling the function compare2 in
Part (a). Indicate the names of the registers stored on the stack and mark the locations on the
stack pointed to by the registers $sp.

Solution:

3

Low address

 $sp $a0

 $a1

 $ra

$sp $sp

High address

 Before the
procedure call

 During the
procedure call

 After the
procedure call

c. Compilers often implement the subtract function in Part (a) using in-lining.

In-lining a function means copying its body into the caller space, allowing the overhead of the
function call to be eliminated. In-lining the subtract function into the compare2 function will
produce the original MIPS code of the compare function given above. Find the reduction in the
total number of executed MIPS assembly instructions gained from inlining the subtract function.

Solution:

Dynamic size of the original MIPS code = 3.

Dynamic size of the modified MIPS code = 14 + 2 = 16.

Reduction = 16 – 3 = 13.

3. The following assembly code computes the factorial of a number. The integer input is passed

through $a0 and the result is returned in register $v0. The code fragment contains some errors.

Correct those MIPS errors and show the content of the stack after each function call, assuming that

the input is 5.

FACT: addi $sp, $sp, -8

 sw $ra, 4($sp)

 sw $a0, 0($sp)

 slti $t0, $a0, -1

 beq $t0, $0, L1

 addi Sv0, $0, 1

 addi $sp, $sp, 8

 jr $ra

L1: addi $t0, $t0, -1

 jal FACT

 lw $a0, 4($sp)

 lw $ra, 0($sp)

 addi $sp, $sp, 8

 mul $v0, $a0, $v0

 jr $ra

4

Solution:
FACT: addi $sp, $sp, -8

 sw $ra, 4($sp)

 sw $a0, 0($sp)

 slti $t0, $a0, 1

 beq $t0, $0, L1

 addi Sv0, $0, 1

 addi $sp, $sp, 8

 jr $ra

L1: addi $a0, $a0, -1

 jal FACT

 lw $ra, 4($sp)

 lw $a0, 0($sp)

 addi $sp, $sp, 8

 mul $v0, $a0, $v0

 jr $ra

The stack content:

1. Originally:

2. After the original call, i.e. calling Factorial(5), $a0 = 5 and $ra = original call address

5

Original call add.

$sp

$sp

5

3. After the original call, i.e. calling Factorial(4), $a0 = 4 and $ra = address of third inst. In L1

4

3rd inst. add. of L1

5

Original call add.

4. After the original call, i.e. calling Factorial(3), $a0 = 3 and $ra = address of third inst. In L1

3

3rd inst. add. of L1

4

3rd inst. add. of L1

5

Original call address

5. After the original call, i.e. calling Factorial(2), $a0 = 2 and $ra = address of third inst. In L1

2

3rd inst. add. of L1

3

3rd inst. add. of L1

4

3rd inst. add. of L1

5

Original call address

6. After the original call, i.e. calling Factorial(1), $a0 = 1 and $ra = address of third inst. In L1

1

3rd inst. add. of L1

$sp

$sp

$sp

$sp

6

2

3rd inst. add. of L1

3

3rd inst. add. of L1

4

3rd inst. add. of L1

5

Original call address

7

4. For the code below:
main()

{

 leaf_function(1)

}

int leaf_function (int f)

{

 int result;

 result = f + 1;

 if (f > 5)

 return result;

 return leaf_function(result);

}

a. Write the corresponding MIPS code

b. Assume that the stack is initially empty and that the stack pointer value is 0x7fff fffc. Functions

inputs are passed using register $a0 and result returned in $v0. Assume that the functions may

only use saved registers. Show the content of the stack after each function call.

Solution:

a. Main: addi $a0, $0, 1
 leaf_funco

Leaf_funco: addi $sp, $sp, -4
 sw $ra, 0($sp)
 addi $v0, $a0, 1
 addi $t1, $0, 5
 slt $t2, $t1, $a0
 bne $t2, $0, end
 addi $a0, $v0, $0
 jal Leaf_funco
 j Exit

Exit: lw $ra, 0($sp)
 addi $sp, $sp, 4
 jr $ra

b. Main: addi $a0, $0, 1
 leaf_funco

Leaf_funco: addi $sp, $sp, -4
 sw $ra, 0($sp)
 addi $v0, $a0, 1
 addi $sp, $sp, -8

8

 sw $s0, 0($sp)
 sw $s1,4($sp)
 addi $s0, $0, 5
 slt $s1, $s0, $a0
 bne $s1, $0, end1
 addi $a0, $v0, $0
 lw $s0, 0($sp)
 lw $s1, 4($sp)
 addi $sp, $sp, 8
 jal Leaf_funco
 j End2

End1: lw $s0, 0($sp)
 lw $s1, 4($sp)
 addi $sp, $sp, 8
 j End2

End2: lw $ra, 0($sp)
 addi $sp, $sp, 4
 jr $ra

The stack content:

1. Originally:

2. After the original call, i.e. calling Leaf_funco(1), $ra = original call address of Main

$sp $sp

9

Original call add.

3. After the original call, i.e. calling Leaf_funco(2), $ra = address of last instruction of Leaf_funco

last inst. of
Leaf_funco

Original call add.

4. After the original call, i.e. calling Leaf_funco(3), $ra = address of last instruction of Leaf_funco

last inst. of
Leaf_funco

last inst. of
Leaf_funco

Original call add.

5. After the original call, i.e. calling Leaf_funco(4), $ra = address of last instruction of Leaf_funco

last inst. of
Leaf_funco

last inst. of
Leaf_funco

last inst. of
Leaf_funco

$sp

$sp

$sp

$sp

10

Original call add.

6. After the original call, i.e. calling Leaf_funco(5), $ra = address of last instruction of Leaf_funco

last inst. of
Leaf_funco

last inst. of
Leaf_funco

last inst. of
Leaf_funco

last inst. of
Leaf_funco

Original call add.

7. After the original call, i.e. calling Leaf_funco(6), $ra = address of last instruction of Leaf_funco

last inst. of
Leaf_funco

last inst. of
Leaf_funco

last inst. of
Leaf_funco

last inst. of
Leaf_funco

last inst. of
Leaf_funco

Original call add.

$sp

$sp

