

SIPvestigator: A CLI Based SIP Session
Diagnostics Utility

Örn Arnarson

Tölvunarfræði

Háskóli Íslands

2018

SIPvestigator: A CLI Based SIP Session
Diagnostics Utility

Örn Arnarson

6 eininga ritgerð sem er hluti af

Baccalaureus Scientiarum gráðu í Tölvunarfræði

Leiðbeinendur
Jón Ingi Einarsson

Hjálmtýr Hafsteinsson

Iðnaðarverkfræði-, vélaverkfræði- og tölvunarfræðideild

Verkfræði- og náttúruvísindasvið
Háskóli Íslands

Reykjavík, maí 2018

SIPvestigator: A CLI Based SIP Session Diagnostics Utility

SIPvestigator

6 eininga ritgerð sem er hluti af Baccalaureus Scientiarum gráðu í Tölvunarfræði

Höfundarréttur © 2018 Örn Arnarson

Öll réttindi áskilin

Iðnaðarverkfræði-, vélaverkfræði- og tölvunarfræðideild

Verkfræði- og náttúruvísindasvið

Háskóli Íslands

Hjarðarhaga 6

107 Reykjavík

Sími: 525 4000

Skráningarupplýsingar:

Örn Arnarson, 2018, SIPvestigator: A CLI Based SIP Session Diagnostics Utility, BS

ritgerð, Iðnaðarverkfræði-, vélaverkfræði- og tölvunardeild, Háskóli Íslands, 21 bls.

Prentun: Háskólaprent

Reykjavík, maí 2018

Abstract

SIPvestigator is a utility to view and analyze SIP communications on the command line. It

is written in the Python programming language. SIP (Session Initiation Protocol) is a

protocol that is used to initiate a phone call or a video call between two or more endpoints.

SIPvestigator loads data containing SIP communications and groups messages into sessions

(or “conversations”) between parties that can be searched or filtered for certain conditions.

The primary goal of the utility is to make analysis of problematic communications easier by

offering filtration of the data (which can be quite voluminous) based on its contents, directly

on the hardware collecting the data, provided that the hardware is capable of running Python.

This paper describes the design and implementation of SIPvestigator and the problems

sought to solve with the utility.

Útdráttur

SIPvestigator er tól til að rýna í og greina SIP samskipti á skipanalínu. SIPvestigator er

skrifaður í Python forritunarmálinu. SIP (e. Session Initiation Protocol) er samskiptastaðall

sem er m.a. notaður í að koma á símtali eða myndsímtali milli tveggja eða fleiri aðila.

SIPvestigator les inn gögn með SIP samskiptum og flokkar skeyti niður í „samtöl“ á milli

aðila sem hægt er að leita í eða sía með ákveðnum skilyrðum. Helsta markmið tólsins er að

auðvelda greiningu vandamála sem komið geta upp með því að bjóða upp á síun gagna (sem

geta orðið heilmikil) út frá innihaldi gagnanna, beint á þeim vélbúnaði þar sem gögnunum

er safnað, að því gefnu að vélbúnaðurinn geti keyrt Python.

Í þessari ritgerð er farið yfir helstu þætti í hönnun og útfærslu SIPvestigator ásamt því að

lýsa þeim vandamálum sem leitast er við að leysa með tólinu.

v

Contents

List of Figures ... vi

Abbreviations ... vii

1 Introduction ... 1

2 The SIPvestigator Utility .. 3
2.1 Supported Datatypes.. 3

2.1.1 Loading Data from a Plain-Text File ... 3
2.1.2 Loading Data from a PCAP File .. 3
2.1.3 Live Capture... 3

2.2 Data Organization.. 4

2.3 CLI Interface ... 5
2.3.1 Loading Data .. 6

2.3.2 Capturing Data ... 6
2.3.3 Creating Filters... 6

2.3.4 Showing Conversations ... 8
2.3.5 Showing Conversation Message Overview ... 8
2.3.6 Showing Conversation Message Contents ... 9

2.4 Common Problems and Practical Examples ... 11

2.4.1 NAT Timeout or Missing Port-Forward .. 11
2.4.2 NAT Timeout Example.. 12
2.4.3 Improper Caller-ID Configuration ... 14

2.4.4 Improper Caller-ID Configuration Example .. 15
2.4.5 Missing or Wrong Diversion Headers ... 16

2.4.6 Wrong Diversion Header Example .. 17

3 Conclusion ... 19

References... 21

vi

List of Figures

Figure 1 - Basic Call Flow .. 4

Figure 2 - Example SIP Invite ... 5

Figure 3 - Help Menu .. 5

Figure 4 - Help Menu for Show Command... 6

Figure 5 - Loading Data .. 6

Figure 6 - Capturing Data .. 6

Figure 7 - Filtering Data Using ‘and’ Condition ... 7

Figure 8 - Filtering Data Using ‘or’ Condition ... 7

Figure 9 - Filter Help Menu .. 7

Figure 10 - Filter Help Menu for Add Command ... 8

Figure 11 - Showing Matching Conversations in Order of Arrival 8

Figure 12 - Showing Matching Conversations in Alphabetical Order of Call-ID 8

Figure 13 - Specific Conversation Overview .. 9

Figure 14 - Show Conversation Messages .. 10

Figure 15 - Show Specific Conversation Message.. 10

Figure 16 - NAT Timeout ... 12

Figure 17 - Loading, Filtering and Glancing at NAT Timeout Data 13

Figure 18 - NAT Timeout Conversation Overview ... 13

Figure 19 - NAT Timeout SIP Invite .. 14

Figure 20 - Loading and Filtering Improper Caller-ID Data .. 15

Figure 21 - Improper Caller-ID Conversation Overview .. 15

Figure 22 - Improper Caller-ID Conversation Details .. 16

Figure 23 - Improper Caller-ID INVITE message (message clipped before SDP) 16

Figure 24 - Loading and Filtering Wrong Diversion Header .. 17

Figure 25 - Filtering Wrong Diversion Header with Has Diversion and Dstnum 17

Figure 26 - Wrong Diversion Header Conversation Details ... 18

Figure 27 - Wrong Diversion Header INVITE message ... 18

vii

Abbreviations

ALG: Application Layer Gateway

B2BUA: Back-to-back User Agent

CLI: Command-line Interface

HTTP: Hypertext Transfer Protocol

IETF: Internet Engineering Task Force

IP: Internet Protocol

LTE: Long-Term Evolution

NAT: Network Address Translation

PBX: Private Branch Exchange

PSTN: Public Switched Telephone Network

PCAP: Packet Capture File

RTP: Real-Time Transport Protocol

SDP: Session Description Protocol

SIP: Session Initiation Protocol

SRTP: Secure Real-Time Transport Protocol

TCP: Transmission Control Protocol

TXT: Text File

UDP: User Datagram Protocol

VoIP: Voice over IP

VoLTE: Voice over LTE

1

1 Introduction

SIP is a widely used protocol for VoIP telephony at the time of writing. Since the late 2000s

its use has become widespread, originally starting mostly in the corporate realm on company

PBX’s. Telecommunications companies are increasingly favoring interconnecting with

other telecommunications companies via SIP trunking1 instead of using traditional circuits

due to the lower costs of running SIP trunks. This is especially true for international

interconnections, where long-distance leased lines are exceedingly expensive, but SIP trunks

can utilize pre-existing infrastructure used for the Internet.

The residential sector has not seen much VoIP adoption until recently, as residences already

had existing fixed-line services and the cost decrease of switching to VoIP was marginal for

the end user. Fixed-line usage has rapidly decreased in the last few years with users adopting

cellular telephony instead2. Exceptions to this are indirect VoIP use, where users make calls

that get converted to VoIP along the way due to PSTN (circuit switched) network and VoIP

network interconnects (and perhaps converted back to traditional fixed-line services on the

other end), and users wanting to have national “fixed-line” services with flexible locations.

This permits users to take their fixed-line number with them overseas, for example.

In recent years and months as of this writing, though, the private sector has seen a rapid

adoption of VoIP technology that relies on the SIP protocol through the adoption of VoLTE

on 4G cellular networks. It is likely that within a few years’ time, the majority of cellular

calls will be Voice over LTE (or LTEs succeeding technologies).

The SIP protocol[3] itself, mostly designed and standardized by the IETF, is modeled after

the HTTP protocol. It is a request and response-based protocol; a client will send a request

to a server and receive some sort of response. The number of messages (requests and

responses) for a single phone call can number from 7 to multiple 10s of messages, which

means that whoever might be trying to debug a problem might quickly lose oversight of the

data.

The SIP protocol is just a control protocol. The media for the phone calls (the speech) is not

part of the SIP protocol. Another protocol, called RTP[4] (or SRTP, if the media is

encrypted) is used, while the SIP protocol sets up the clients for media transmission by

specifying which IP addresses, ports, codecs, etc. will be used in a negotiation between the

two clients. The transmission of the media is then an entirely separate process, though under

the control of SIP.

1 SIP trunking has a rather vague meaning, but generally it means an interconnect between two parties, often

with an upper limit to the number of concurrent calls. It is usually trusted from a protocol perspective, in that

it requires no protocol-based authentication, but rather relies on IP addresses or VPN tunnels etc.
2 The number of active fixed-line services in Iceland decreased by about 40.000 lines from the year 2008 to

2016, while mobile subscriptions increased by about 125.000 subscriptions in the same period. VoIP services

increased by 50.000 subscriptions in the same period. [1][2]

2

The SIPvestigator utility is designed with the service provider in mind, where data captures

are usually done in some central system that has 100s or 1000s of SIP requests per second,

with the aim of giving the user a clear overview of the data and providing searchability via

filters that make sense to the user. Its benefit to the user is that data can be analyzed directly

on the server responsible for capturing the data, instead of transferring the data out from the

server and loading it up in an analysis tool like Wireshark3. Further, SIPvestigator is

application aware, and can provide easy filtering of things like calling-telephone number,

called-telephone number, the presence of certain headers or their contents, which can be

difficult to filter out with a tool like Wireshark.

SIPvestigator can be downloaded from the project’s GitHub4 page.

3 Wireshark is a widely used cross-platform graphical network protocol analyzer, which lets users do deep

inspection of network communications on hundreds of protocols.
4 https://github.com/orn1983/sipvestigator

https://github.com/orn1983/sipvestigator

3

2 The SIPvestigator Utility

2.1 Supported Datatypes

The SIPvestigator utility supports importing data via three methods:

1. Loading data from a plain-text file with a .txt suffix

2. Loading data from a PCAP file with a .pcap suffix

3. Capturing data directly by sniffing networking traffic

2.1.1 Loading Data from a Plain-Text File

The program expects the plain-text file to contain something that looks like the output one

might get from the tcpdump utility, when tcpdump is set to dump data directly to the

terminal. The reason for this is that often when doing debugging, one might start with

running tcpdump directly, not expecting a large amount of data, but then having far more

data than expected. Dumping this data to a file would then allow one to subsequently load

the data into SIPvestigator for parsing and filtering. Further, many phone systems provide

their debugging data in exactly this data format, which makes it possible to analyze said data

with SIPvestigator.

2.1.2 Loading Data from a PCAP File

SIPvestigator can also load PCAP files directly. These files are usually produced by

programs like tcpdump with the –w option added, or Wireshark. Other utilities often support

exporting PCAP files as well. SIPvestigator uses the python module dpkt[5] to load PCAP

files. Unfortunately, dpkt uses a lot of memory when loading PCAP files, so loading PCAP

files larger than 50 MB is not recommended.

2.1.3 Live Capture

There is a third method of loading data into the program, and that is by having the program

capture live network packets as they are seen on the wire. In this case, another PCAP library

called scapy[6] is used, and thus nothing needs to be saved to file in order to do some

analysis. This method is rather rudimentary and is a blocking method with no feedback

about captured packets until the capture is stopped.

4

2.2 Data Organization

As mentioned in the introduction, the SIP protocol is modeled after the HTTP protocol.

Almost universally, the UDP protocol is chosen for delivery over TCP due to its light

overhead and the nature of voice communications. This means that for any given phone call,

you will have several separate UDP packets being sent back and forth, but they all belong to

the same phone call.

Often when capturing SIP data for analysis, one will have some data that is not pertinent to

the debugging process, such as other phone calls or SIP events that were going on at the

same time. You might also have, depending on the capture method, a lot of RTP media, and

even other unrelated packets, which makes analysis even more cumbersome unless you have

some way of filtering out the non-pertinent data. Sometimes, analyzing the RTP media along

with the SIP messages can be key to solving a problem, and if this is the case, another tool,

such as Wireshark, would need to be used.

When SIPvestigator parses and processes the SIP data, regardless of the source of the data,

it only cares about SIP messages, and will discard all other information. The SIP messages

are grouped together into dialogs by a message header present in all messages called Call-

ID, which is a (partially) randomly generated unique identifier generated by the client

sending the initial request (see Figure 2). SIPvestigator refers these dialogs (or sessions) as

conversations, though the former two are more commonly used in standard practice.

Figure 1 - Basic Call Flow

5

Figure 2 - Example SIP Invite

Since SIP messages can appear out of order (due to the nature of UDP), and multiple

conversations are taking place at once, SIPvestigator will blindly go over the whole capture

file, and just add each SIP message to its corresponding conversation, based on the Call-ID.

The conversations themselves are then stored in the order in which they arrived (or rather

the order of the first message seen of each conversation), and can be accessed numerically

via the order of arrival or via the unique Call-ID.

2.3 CLI Interface

The SIPvestigator utility was designed to be used with a command-line interface, or CLI,

akin to those used in commercial networking equipment, such as Juniper or Cisco. It is

somewhat tree structured, in that each command has a set of subcommands which may have

further subcommands. It has built-in help and tab-completion.

There are effectively two modes of operation, or contexts; general operation and filter

configuration.

In general operation, one can load data from one or more files, clear data, start a packet

capture, get help, show data relating to SIP conversations that have been loaded or captured,

exit the program or enter the other mode of operation; filter configuration.

One can see a help menu by typing out the command ‘help’.

Figure 3 - Help Menu

6

As shown in Figure 3, detailed help on a topic can be seen by issuing the command ‘help

<topic>’. For example, in Figure 4, one can see the help menu for the show command.

Figure 4 - Help Menu for Show Command

2.3.1 Loading Data

Data can either be loaded by supplying a filename when starting the program, or via the use

of the command load followed by a path to a file. Multiple files can be loaded in the same

session, and this will simply add to the number of messages/conversations available.

Figure 5 - Loading Data

2.3.2 Capturing Data

Data can also be captured directly from within SIPvestigator. This is still rather rudimentary,

with a capture blocking further user input and analysis until the capture is complete. The

capture can be stopped by using the break key sequence, and at the end of the capture, the

number of captured packets will be shown on screen.

A capture can be started by issuing the command ‘capture start’. The capture is stopped by

issuing the break (Control-C) key sequence.

Figure 6 - Capturing Data

2.3.3 Creating Filters

In the filter configuration mode of operation, or context, one can add and delete filters, show

the active filters, select between filtering modes, reset (remove) all filters and exit the filter

mode. Once a filter has been added, an asterisk (*) will appear behind the SipInv prompt to

indicate that a filter is currently active.

To create filters, the filter configuration mode must be entered by issuing the command

‘filter’.

7

There are two filtering modes; intersection-based filtering and union-based filtering. This is

colloquially better known as and/or filtering. The filtering mode is selected by setting the

condition filter to either and or or. If it helps, one could think of the and filtering mode as a

mode that narrows search results down to fewer and fewer results, while the or mode will

expand the search to include more and more results.

Figure 7 - Filtering Data Using ‘and’ Condition

The filtering mode can be set to intersection filter by issuing the command ‘set condition

and’ from the filter context. Similarly, it can be set to set to a union filter by issuing the

command ‘set condition or’. The default value for condition is or. At present, it is not

possible to mix and match and/or conditions.

Figure 8 - Filtering Data Using ‘or’ Condition

The filter context has its own help menu, which can be invoked by issuing the command

‘help’.

Figure 9 - Filter Help Menu

Each command within that help menu also has its own help submenu, which can be invoked

by issuing the command ‘help <topic>’, which will generally have some examples of output

as well.

8

Figure 10 - Filter Help Menu for Add Command

2.3.4 Showing Conversations

Once the data has been filtered, a list of the matching conversations with a summary of the

first SIP method seen and between what parties can be shown. This is done by issuing the

command ‘show conversations’. They can be displayed either in order of arrival by adding

the keyword sorted, i.e. ‘show conversations sorted’, or ordered alphabetically by their Call-

IDs by omitting the keyword.

Figure 11 - Showing Matching Conversations in Order of Arrival

Figure 12 - Showing Matching Conversations in Alphabetical Order of Call-ID

In this instance, there seem to be two legs of the same conversation; i.e. the capture seems

to have been made at a SIP proxy/B2BUA, and we are seeing both the inbound call-leg as

received by the proxy and the outbound call-leg as sent-out by the proxy/B2BUA.

2.3.5 Showing Conversation Message Overview

From there, we can choose a conversation (e.g. conversation #0) and see a summary of all

the SIP methods (or messages) exchanged in the conversation, with timestamps and

information about which party sent it by issuing the command ‘show conversation 0’.

9

Figure 13 - Specific Conversation Overview

2.3.6 Showing Conversation Message Contents

At this point, we can either choose to see all the messages of the conversation sequentially,

with the start of each message clearly marked out, or we can select which individual message

to see.

To see the contents of all the messages, we simply request all the messages by issuing the

command ‘show conversation 0 messages’ for the above example. Note that Figure 14 has

been cropped to limit size and does not include the entire conversation.

10

Figure 14 - Show Conversation Messages

Similarly, we can request a single message (e.g. #5) from the conversation by issuing the

command ‘show conversation 0 message 5’

Figure 15 - Show Specific Conversation Message

11

2.4 Common Problems and Practical Examples

Now that we have gone through the features, it might be helpful to show some practical

examples of how the tool is used to aid with debugging.

There are, in the author’s experience, three problems that make up the majority of VoIP

support requests from customers, in order of prevalence5;

1. NAT or firewall issues leading to retransmitted SIP requests that get no response

2. Improper Caller-ID configuration during initial setup of SIP trunks resulting in a call-

rejection, either for inbound or outbound calls

3. Missing or wrong Diversion headers during call forwards of SIP trunks resulting in

a call-rejection

Less common problems include more subtle NAT problems that are a bit harder to diagnose,

usually due to a faulty ALG6 implementation, SIP requests coming in from the wrong source

IP address or destination port, codec mismatches, and many more.

As previously mentioned; SIPvestigator’s purpose is to aid debugging by making it easier to

diagnose problems by reducing noise through simple and intuitive filters that make sense to

the user in an IP telephony context, such as phone numbers, IP addresses, diversion headers,

and so on. We will now look at each of the three problems with an example use case.

2.4.1 NAT Timeout or Missing Port-Forward

A common problem for SIP endpoints is that they are sitting behind a NAT or a firewall that

does not pass received messages on to the endpoint. In these cases, a SIP message is sent to

the address of the endpoint, which is known either via a SIP registration from the SIP

endpoint to its SIP registration server (or registrar), or via a known, fixed IP address and port

combination. The latter is often called a SIP trunk.

In the case of a SIP registration, the SIP endpoint will send a special SIP REGISTER

message to its SIP registration server which will start an authentication process. If the SIP

endpoint is sitting behind a NAT or a firewall, this process will leave open a port in the

router/firewall’s NAT table, through which the endpoint will be reachable. Usually, though,

this NAT session in the NAT table will live for a relatively short time (anywhere from 30

seconds to a few minutes). Once the entry has expired, the SIP endpoint is no longer

reachable through this IP/port combination. It will only become reachable again once it re-

registers with the registrar or dispatches a SIP message. The interval between registrations

is usually configurable with common values of 30-60 minutes.

5 Naturally, the prevalence of the types of problems encountered depends on the types of services being sold

and customer base of the service provider.
6 An Application Layer Gateway is a router implementation that aims to be protocol/application aware and

mitigate problems presented by NAT. Often, these implementations are poorly implemented and cause more

harm than good. SIP gateways have gotten pretty good at detecting and mitigating NAT problems themselves.

12

A common solution to the problem is to lower the re-registration period to something like

60-120 seconds. This will force the SIP endpoint to frequently re-register, thus maintaining

the router’s/firewall’s NAT table entry. Another solution is to leave the registration period

as-is and send a so-called NAT keepalive message. This is generally a rather meaningless

SIP message like OPTIONS, initially intended to probe a SIP endpoint for its capabilities.

While the endpoint usually does not care about the response to the OPTIONS query in this

context, the intent of keeping the NAT table entry alive has been fulfilled.

In the case of SIP trunks, if a SIP endpoint is sitting behind a NAT/firewall, there are two

methods available to make it reachable. The first one is via the NAT keepalive SIP

OPTIONS message mentioned in the previous paragraph, and the second one is via a NAT

port-forwarding rule on the router/firewall. The latter is generally used for SIP trunks,

should they reside behind a NAT, though it is generally preferred to eliminate NAT

altogether with SIP trunks by using additional IP addresses or private networks.

2.4.2 NAT Timeout Example

The general problem with a NAT timeout is that outbound calls from the SIP endpoint are

working, while inbound calls are (sometimes or always) not working. The best filter for

finding such a problem is thus generally via the destination number.

We start off by loading SIPvestigator with the captured output and setting up a filter for the

known destination number dialed.

Figure 16 - NAT Timeout

13

Figure 17 - Loading, Filtering and Glancing at NAT Timeout Data

This reduces the number of conversations from 45 to exactly 1 conversation, which has

already reduced the scope of the problem greatly. We can optionally take a make sure this

is the correct call by verifying the source number and timestamp by issuing ‘show

conversations sorted.

This seems like the right call, so we can look at the message exchange by issuing ‘show

conversation 0’.

Figure 18 - NAT Timeout Conversation Overview

It seems rather obvious at this stage that the SIP endpoint is not responding to the SIP

INVITE messages. There may be multiple reasons for this. Depending on the description

of the problem by the customer, the reason can be better surmised. If no calls were working

at all, inbound or outbound, the reason could be a networking problem for the SIP endpoint.

In the case of working outbound calls but inbound calls receiving no reply, a NAT timeout

should be suspected.

The next stage in debugging would be looking at a single INVITE message, to make sure

that the request is being sent to the correct IP address/port. If not, there might be a faulty

SIP ALG causing the registration entry (the IP address/port location of the SIP endpoint) to

be incorrect. In that case, the SIP registrar can usually be configured to ignore the reported

IP address of the endpoint and rather use the source IP address of the REGISTER request to

mitigate the problem. Another possibility of a problem would be a misconfigured SIP trunk.

Let us look at one of these INVITE messages by issuing ‘show conversation 0 message 0’.

14

Figure 19 - NAT Timeout SIP Invite

If we are happy that the source and destination IP addresses and ports are correct, then

judging from this data, a reasonable assumption would be that a router/firewall

configuration or a NAT timeout is at fault, and we can adjust configuration on both ends

accordingly to try to mitigate the problem.

2.4.3 Improper Caller-ID Configuration

Another common problem is improper Caller-ID configuration.

SIP trunks are often thought of as virtual circuits, like the ones traditionally used in

telecommunications before the prevalence of VoIP. They “connect” two points, which in

the case of VoIP is usually just a set of IP addresses and ports. In the case of a traditional

PSTN trunk, this used to be a physical copper or optical link. There are optional restrictions

on the number of concurrent calls “on the trunk”, either due to limited bandwidth or licensing

reasons.

Another common property of trunks, SIP or otherwise, is a restriction on which Caller-ID

can be used when making outbound calls. This is especially the case for trunks configured

for PBXs that companies might run for their offices, and less so for trunk interconnects

between telecommunication companies.

15

The reason for this property or limitation is twofold; to prevent a malicious user from using

the trunk to make fraudulent calls or using it for otherwise nefarious or deceptive purposes,

and to make sure that the SIP trunks / PBXs are properly configured and sending the correct

Caller-ID.

We shall now look at an example of a failure of the latter.

2.4.4 Improper Caller-ID Configuration Example

The best way to diagnose this problem is to ask the end user to make a phone call to a pre-

determined telephone number, so we can easily filter the data.

Another common way of filtering would be to filter calls by the source IP address, as in such

a case, the traffic originating from the IP address would generally be minimal.

Let us load the data and filter by the destination number.

Figure 20 - Loading and Filtering Improper Caller-ID Data

As before, our large dataset of 406 conversations / 2090 SIP messages gets filtered down to

just 1 conversation, making analysis that much easier.

We can now look at an overview of the one conversation by issuing ‘show conversations

sorted’.

Figure 21 - Improper Caller-ID Conversation Overview

From this data, it is already evident that the problem is most likely that the Caller-ID is

wrong, as 1502 is not a valid Caller-ID in Iceland according to the Icelandic numbering plan7

and the capture was made outside of the PBX. As before, we can see more detail by issuing

the command ‘show conversation 0’.

7 https://www.pfs.is/english/telecom-affairs/numbering/

https://www.pfs.is/english/telecom-affairs/numbering/

16

Figure 22 - Improper Caller-ID Conversation Details

Now it should be abundantly clear to anyone with a knowledge in SIP communications and

the Icelandic numbering plan that the call is being rejected due to an improper Caller-ID,

assuming the SIP trunk has such restrictions.

Finally, we look at the actual INVITE to see whether there is something else that is improper

by issuing the command ‘show conversation 0 message 0’.

Figure 23 - Improper Caller-ID INVITE message (message clipped before SDP)

This gives us no new information. Everything looks proper apart from the Caller-ID number

of 1502.

2.4.5 Missing or Wrong Diversion Headers

When an incoming call is diverted (or call-forwarded) to another number in SIP, there are

multiple methods of doing so. The most commonly used in Iceland, due to its simplicity, is

a SIP header called Diversion.

When diverting a call, the user receiving the diverted call will generally want to know who

is calling him (or calling the number being diverted). The user receiving the diverted call

usually does not care what number diverted the call, as it is usually the user himself who has

configured the diversion.

The reason a header such as this is needed is to preserve the information about who is

diverting the call, so that the call can be authorized and billed correctly, as the user who

originally dialed the number probably does not have permission to make outbound calls on

the trunk.

17

To give an example, User A calls User B. User B has set up a call-forward/diversion to his

mobile phone number, which we will call User C. The Caller-ID of User A has been

preserved, so to the SIP trunk and User C, it looks like User A is calling User C, which is

not the case. Therefore, a Diversion header stating that User B has diverted the call is

inserted into the INVITE message.

We shall now look at an example where a Diversion header is incorrect.

2.4.6 Wrong Diversion Header Example

As before, one of the best filters to use is simply the destination number. Generally, if

someone is complaining about a diversion / call forward not working, he will know to which

number the call is being forwarded, though of course in some cases the wrong destination

number might of course be part of the problem.

As before, we start by loading the data and setting the filter.

Figure 24 - Loading and Filtering Wrong Diversion Header

Alternatively, we could have used another filter, either standalone or in conjunction with the

one we used, called has diversion, which states that we want to see calls that actually have a

Diversion header present. Had we used the has diversion filter with an end-result of no calls

found, that would have given us an indication that the header was actually missing.

Figure 25 - Filtering Wrong Diversion Header with Has Diversion and Dstnum

In this instance, the result from using this filter was the same, since we only had one call to

start with after filtering by the destination number. It was merely used for demonstration

purposes.

As we only have one conversation, we can skip looking over the list of conversations as that

would likely not give us any useful information in this case. Therefore, we just issue a

command to see the conversation overview, using tab-completion to fill-in the Call-ID of

the call (though we could have just as easily entered the number 0 as there is only one

conversation).

18

Figure 26 - Wrong Diversion Header Conversation Details

We can see that the Caller-ID in this instance is 7712552, which according to the Icelandic

Numbering Plan is a mobile telephone number. As this is a call originating from a SIP trunk,

that indicates that the call is being diverted8, so let us look at the message and look for the

header.

Figure 27 - Wrong Diversion Header INVITE message

As we can see, there is indeed a Diversion header present. However, its numeric value of

1502 is not a legal number in the Icelandic numbering plan. Further, the IP address in the

Diversion header does not match the source IP address of the capture, which might indicate

that the diversion is happening elsewhere. This is not necessarily an error but might rather

indicate that the diversion took place someplace else than on the PBX itself. It depends on

the setup of the PBX and its clients.

Correcting the Diversion header to include the full telephone number of the party diverting

the call would resolve the issue.

8 Alternatively, someone might be trying to use a fake Caller-ID. Since we used a filter that used an intersect

of the destination number 5660066 and the condition has diversion, we know that a Diversion header must be

present.

19

3 Conclusion

VoIP using SIP is a technology that is seeing more and more use due to the rapid decline of

fixed-line alongside the rapid adoption of VoLTE. There are rather few tools available to

aid analysis outside of the telecommunications sphere where specialized tools intended for

use with the vendor products are provided.

In the author’s experience, once a SIP/VoIP platform has been installed and setup, most

debugging requests are for something rather simple, such as a misconfigured Caller-ID or

invalid number type for the destination number. Debugging such simple problems can take

up a disproportionate amount of time considering the simplicity of the problem. This is due

to too much information on the SIP gateways where the debugging is generally taking place.

Finding the correct SIP messages to look at is time consuming for the user due to this vast

amount of data. The result is often that the debug is dumped to a PCAP file, transferred to

the user’s personal computer and opened in a tool like Wireshark.

With SIPvestigator, the user can quickly and reliably find the problematic SIP messages due

to the easy-to-use filtering. As this can be performed directly on the server where the capture

is taking place, analysis can start immediately. Should further analysis be needed, such as

analysis of audio problems, the PCAP file can be transferred onto the user’s computer for

deeper analysis.

This tool is built for users with experience in reading and debugging SIP messages. It has

no automatic debugging features, such as detecting a codec mismatch between parties, but

rather just makes all the relevant information available to the user so he can start debugging

quickly without having to wade through an ocean of irrelevant information.

Future work includes better support for taking live captures with progress updates in real-

time, exporting captured and filtered data, better fault tolerance for malformed SIP messages,

more contexts so that a user could e.g. enter a ‘conversation 0’ context so he need only enter

‘show message 0’ to see the message etc. Even without this further work, SIPvestigator

could prove very useful in the quick analysis of problems.

20

21

References

[1] Post and Telecom Administration in Iceland, May 2011, “Statistics on the Icelandic

Telecommunications Market 2010”,

https://www.pfs.is/upload/files/Tölfræðiskýrsla_PFS_2010.pdf

[2] Post and Telecom Administration in Iceland, May 2017, “Statistics on the Icelandic

Telecommunications Market 2016”,

https://www.pfs.is/library/Skrar/Tolfraedi/Tolfraediskyrslur-

PFS/Tolfraedi_um_islenska_fjarskiptamarkadinn_2016.pdf

[3] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,

Handley, M., and E. Schooler, June 2002, RFC 3261, “SIP: Session Initiation

Protocol”, https://www.rfc-editor.org/info/rfc3261

[4] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, July 2003, RFC 3550,

“RTP: A Transport Protocol for Real-Time Applications”, https://www.rfc-

editor.org/info/rfc3550

[5] Song, D., April 2018, “dpkt” (Version 1.9.1) [Software]. Available from

https://pypi.python.org/pypi/dpkt

[6] P. Biondi, April 2018, “Scapy” (Version 2.2.0) [Software]. Available from

http://www.secdev.org/projects/scapy/

https://www.pfs.is/upload/files/Tölfræðiskýrsla_PFS_2010.pdf
https://www.pfs.is/library/Skrar/Tolfraedi/Tolfraediskyrslur-PFS/Tolfraedi_um_islenska_fjarskiptamarkadinn_2016.pdf
https://www.pfs.is/library/Skrar/Tolfraedi/Tolfraediskyrslur-PFS/Tolfraedi_um_islenska_fjarskiptamarkadinn_2016.pdf
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3550
https://www.rfc-editor.org/info/rfc3550
https://pypi.python.org/pypi/dpkt
http://www.secdev.org/projects/scapy/

