NEW JERSEY <u>STUDENT LEARNING STANDARDS FOR</u> Mathematics | **Grade 6**

Mathematics | Grade 6

In Grade 6, instructional time should focus on four critical areas: (1) connecting ratio and rate to whole number multiplication and division and using concepts of ratio and rate to solve problems; (2) completing understanding of division of fractions and extending the notion of number to the system of rational numbers, which includes negative numbers; (3) writing, interpreting, and using expressions and equations; and (4) developing understanding of statistical thinking.

(1) Students use reasoning about multiplication and division to solve ratio and rate problems about quantities. By viewing equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by analyzing simple drawings that indicate the relative size of quantities, students connect their understanding of multiplication and division with ratios and rates. Thus students expand the scope of problems for which they can use multiplication and division to solve problems, and they connect ratios and rates. Students solve a wide variety of problems involving ratios and rates.

(2) Students use the meaning of fractions, the meanings of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for dividing fractions make sense. Students use these operations to solve problems. Students extend their previous understandings of number and the ordering of numbers to the full system of rational numbers, which includes negative rational numbers, and in particular negative integers. They reason about the order and absolute value of rational numbers and about the location of points in all four quadrants of the coordinate plane.

(3) Students understand the use of variables in mathematical expressions. They write expressions and equations that correspond to given situations, evaluate expressions, and use expressions and formulas to solve problems. Students understand that expressions in different forms can be equivalent, and they use the properties of operations to rewrite expressions in equivalent forms. Students know that the solutions of an equation are the values of the variables that make the equation true. Students use properties of operations and the idea of maintaining the equality of both sides of an equation to solve simple one-step equations. Students construct and analyze tables, such as tables of quantities that are in equivalent ratios, and they use equations (such as 3x = y) to describe relationships between quantities.

(4) Building on and reinforcing their understanding of number, students begin to develop their ability to think statistically. Students recognize that a data

distribution may not have a definite center and that different ways to measure center yield different values. The median measures center in the sense that it is roughly the middle value. The mean measures center in the sense that it is the value that each data point would take on if the total of the data values were redistributed equally, and also in the sense that it is a balance point. Students recognize that a measure of variability (interquartile range or mean absolute deviation) can also be useful for summarizing data because two very different sets of data can have the same mean and median yet be distinguished by their variability. Students learn to describe and summarize numerical data sets, identifying clusters, peaks, gaps, and symmetry, considering the context in which the data were collected.

Students in Grade 6 also build on their work with area in elementary school by reasoning about relationships among shapes to determine area, surface area, and volume. They find areas of right triangles, other triangles, and special quadrilaterals by decomposing these shapes, rearranging or removing pieces, and relating the shapes to rectangles. Using these methods, students discuss, develop, and justify formulas for areas of triangles and parallelograms. Students find areas of polygons and surface areas of prisms and pyramids by decomposing them into pieces whose area they can determine. They reason about right rectangular prisms with fractional side lengths to extend formulas for the volume of a right rectangular prism to fractional side lengths. They prepare for work on scale drawings and constructions in Grade 7 by drawing polygons in the coordinate plane.

Grade 6 Overview

Ratios and Proportional Relationships

• Understand ratio concepts and use ratio reasoning to solve problems.

The Number System

- Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
- Compute fluently with multi-digit numbers and find common factors and multiples.
- Apply and extend previous understandings of numbers to the system of rational numbers.

Mathematical Practices

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning

Expressions and Equations

- Apply and extend previous understandings of arithmetic to algebraic expressions.
- Reason about and solve one-variable equations and inequalities.
- Represent and analyze quantitative relationships between dependent and independent variables.

Geometry

• Solve real-world and mathematical problems involving area, surface area, and volume.

Statistics and Probability

- Develop understanding of statistical variability.
- Summarize and describe distributions.

Ratios and Proportional Relationships

6.RP

6.NS

A. Understand ratio concepts and use ratio reasoning to solve problems.

- 1. Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."
- 2. Understand the concept of a unit rate *a/b* associated with a ratio *a:b* with *b* ≠ [], and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of \$5 per hamburger."¹
- 3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
 - a. Make tables of equivalent ratios relating quantities with whole number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
 - b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?
 - c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent.
 - d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.

The Number System

A. Apply and extend previous understandings of multiplication and division to divide fractions by fractions.

1. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2/3) \div (3/4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2/3) \div (3/4) = 8/9$ because 3/4 of 8/9 is 2/3. (In general, $(a/b) \div (c/d) = ad/bc$). How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi?

B. Compute fluently with multi-digit numbers and find common factors and multiples.

- 2. Fluently divide multi-digit numbers using the standard algorithm.
- 3. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.
- 4. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1–100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express 36 + 8 as 4(9 + 2).

¹Expectations for unit rates in this grade are limited to non-complex fractions.

C. Apply and extend previous understandings of numbers to the system of rational numbers.

- 5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
- 6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
 - a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., -(-3) = 3, and that 0 is its own opposite.
 - b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
 - c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.
- 7. Understand ordering and absolute value of rational numbers.
 - a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret -3 > -7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
 - b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3 \circ C > -7 \circ C$ to express the fact that $-3 \circ C$ is warmer than $-7 \circ C$.
 - c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write |-30| = 30 to describe the size of the debt in dollars.
 - d. Distinguish comparisons of absolute value from statements about order. *For example, recognize that an account balance less than –30 dollars represents a debt greater than 30 dollars.*
- 8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

Expressions and Equations

A. Apply and extend previous understandings of arithmetic to algebraic expressions.

- 1. Write and evaluate numerical expressions involving whole-number exponents.
- 2. Write, read, and evaluate expressions in which letters stand for numbers.
 - a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5 y.
 - b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product of two factors; view (8 + 7) as both a single entity and a sum of two terms.
 - c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those

6.EE

involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V = s^3$ and $A = 6s^2$ to find the volume and surface area of a cube with sides of length s = 1/2.

- 3. Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3 (2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.
- 4. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for.

B. Reason about and solve one-variable equations and inequalities.

- 5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
- 6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
- 7. Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px = q for cases in which p, q and x are all nonnegative rational numbers.
- 8. Write an inequality of the form x > c or x < c to represent a constraint or condition in a realworld or mathematical problem. Recognize that inequalities of the form x > c or x < c have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

C. Represent and analyze quantitative relationships between dependent and independent variables.

9. Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.

Geometry

6.G

A. Solve real-world and mathematical problems involving area, surface area, and volume.

- 1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
- 2. Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = I w h and V = B h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

- 3. Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
- 4. Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

Statistics and Probability

6.SP

A. Develop understanding of statistical variability.

- 1. Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.
- 2. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
- 3. Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.

B. Summarize and describe distributions.

- 4. Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
- 5. Summarize numerical data sets in relation to their context, such as by:
 - a. Reporting the number of observations.
 - b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
 - c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
 - d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

Mathematics | Standards for Mathematical Practice

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report *Adding It Up*: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1 Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2 Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to *decontextualize*—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to *contextualize*, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3 Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account

the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4 Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5 Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6 Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7 Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 × 8 equals the well remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2 × 7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8 Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y - 2)/(x - 1) = 3. Noticing the regularity in the way terms cancel when expanding (x - 1)(x + 1), $(x - 1)(x^2 + x + 1)$, and $(x - 1)(x^3 + x^2 + x + 1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Connecting the Standards for Mathematical Practice to the Standards for Mathematical Content

The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathematics increasingly ought to engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle and high school years. Designers of curricula, assessments, and professional development should all attend to the need to connect the mathematical practices to mathematical content in mathematics instruction.

The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word "understand" are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices.

In this respect, those content standards, which set an expectation of understanding, are potential "points of intersection" between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and student achievement in mathematics.

Glossary

Addition and subtraction within 5, 10, 20, 100, or 1000. Addition or subtraction of two whole numbers with whole number answers, and with sum or minuend in the range 0-5, 0-10, 0-20, or 0-100, respectively. Example: 8 + 2 = 10 is an addition within 10, 14 - 5 = 9 is a subtraction within 20, and 55 - 18 = 37 is a subtraction within 100.

Additive inverses. Two numbers whose sum is 0 are additive inverses of one another. Example: 3/4 and -3/4 are additive inverses of one another because 3/4 + (-3/4) = (-3/4) + 3/4 = 0.

Associative property of addition. See Table 3 in this Glossary.

Associative property of multiplication. See Table 3 in this Glossary.

Bivariate data. Pairs of linked numerical observations. Example: a list of heights and weights for each player on a football team.

Box plot. A method of visually displaying a distribution of data values by using the median, quartiles, and extremes of the data set. A box shows the middle

50% of the data.1

Commutative property. See Table 3 in this Glossary.

Complex fraction. A fraction *A*/*B* where *A* and/or *B* are fractions (*B* nonzero).

Computation algorithm. A set of predefined steps applicable to a class of problems that gives the correct result in every case when the steps are carried out correctly. *See also:* computation strategy.

Computation strategy. Purposeful manipulations that may be chosen for specific problems, may not have a fixed order, and may be aimed at converting one problem into another. *See also:* computation algorithm.

Congruent. Two plane or solid figures are congruent if one can be obtained from the other by rigid motion (a sequence of rotations, reflections, and translations).

Counting on. A strategy for finding the number of objects in a group without having to count every member of the group. For example, if a stack of books is known to have 8 books and 3 more books are added to the top, it is not necessary to count the stack all over again. One can find the total by *counting on*—pointing to the top book and saying "eight," following this with "nine, ten, eleven. There are eleven books now."

Dot plot. See: line plot.

Dilation. A transformation that moves each point along the ray through the point emanating from a fixed center, and multiplies distances from the center by a common scale factor.

Expanded form. A multi-digit number is expressed in expanded form when it is written as a sum of singledigit multiples of powers of ten. For example, 643 = 600 + 40 + 3.

Expected value. For a random variable, the weighted average of its possible values, with weights given by their respective probabilities.

First quartile. For a data set with median *M*, the first quartile is the median of the data values less than *M*. Example: For the data set {1, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the first quartile is 6.² See also: median, third quartile, interquartile range.

Fraction. A number expressible in the form a/b where a is a whole number and b is a positive whole number. (The word *fraction* in these standards always refers to a non-negative number.) *See also:* rational number.

Identity property of 0. See Table 3 in this Glossary.

Independently combined probability models. Two probability models are said to be combined independently if the probability of each ordered pair in the combined model equals the product of the original probabilities of the two individual outcomes in the ordered pair.

¹Adapted from Wisconsin Department of Public Instruction, <u>http://dpi.wi.gov/standards/mathglos.html</u>, accessed March 2, 2010. ²Many different methods for computing quartiles are in use. The method defined here is sometimes called the Moore and McCabe method. See Langford, E., "Quartiles in Elementary Statistics," *Journal of Statistics Education* Volume 14, Number 3 (2006).

Integer. A number expressible in the form a or -a for some whole number a.

Interquartile Range. A measure of variation in a set of numerical data, the interquartile range is the distance between the first and third quartiles of the data set. Example: For the data set $\{1, 3, 6, 7, 10, 12, 14, 15, 22, 120\}$, the interquartile range is 15 - 6 = 9. See also: first quartile, third quartile.

Line plot. A method of visually displaying a distribution of data values where each data value is shown as a dot or mark above a number line. Also known as a dot plot.³

Mean. A measure of center in a set of numerical data, computed by adding the values in a list and then dividing by the number of values in the list.⁴ Example: For the data set {1, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the mean is 21.

Mean absolute deviation. A measure of variation in a set of numerical data, computed by adding the distances between each data value and the mean, then dividing by the number of data values. Example: For the data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the mean absolute deviation is 20.

Median. A measure of center in a set of numerical data. The median of a list of values is the value appearing at the center of a sorted version of the list—or the mean of the two central values, if the list contains an even number of values. Example: For the data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 90}, the median is 11.

Midline. In the graph of a trigonometric function, the horizontal line halfway between its maximum and minimum values.

Multiplication and division within 100. Multiplication or division of two whole numbers with whole number answers, and with product or dividend in the range 0-100. Example: $72 \div 8 = 9$.

Multiplicative inverses. Two numbers whose product is 1 are multiplicative inverses of one another. Example: 3/4 and 4/3 are multiplicative inverses of one another because $3/4 \times 4/3 = 4/3 \times 3/4 = 1$.

Number line diagram. A diagram of the number line used to represent numbers and support reasoning about them. In a number line diagram for measurement quantities, the interval from 0 to 1 on the diagram represents the unit of measure for the quantity.

Percent rate of change. A rate of change expressed as a percent. Example: if a population grows from 50 to 55 in a year, it grows by 5/50 = 10% per year.

Probability distribution. The set of possible values of a random variable with a probability assigned to each.

Properties of operations. See Table 3 in this Glossary.

Properties of equality. See Table 4 in this Glossary.

Properties of inequality. See Table 5 in this Glossary.

Properties of operations. See Table 3 in this Glossary.

Probability. A number between 0 and 1 used to quantify likelihood for processes that have uncertain outcomes (such as tossing a coin, selecting a person at random from a group of people, tossing a ball at a target, or testing for a medical condition).

Probability model. A probability model is used to assign probabilities to outcomes of a chance process by examining the nature of the process. The set of all outcomes is called the sample space, and their probabilities sum to 1. *See also:* uniform probability model.

Random variable. An assignment of a numerical value to each outcome in a sample space.

Rational expression. A quotient of two polynomials with a non-zero denominator.

Rational number. A number expressible in the form a/b or -a/b for some fraction a/b. The rational numbers include the integers.

Rectilinear figure. A polygon all angles of which are right angles.

Rigid motion. A transformation of points in space consisting of a sequence of one or more translations, reflections, and/or rotations. Rigid motions are here assumed to preserve distances and angle measures.

³Adapted from Wisconsin Department of Public Instruction, op. cit.

⁴To be more precise, this defines the *arithmetic mean*.

Repeating decimal. The decimal form of a rational number. See also: terminating decimal.

Sample space. In a probability model for a random process, a list of the individual outcomes that are to be considered.

Scatter plot. A graph in the coordinate plane representing a set of bivariate data. For example, the heights and weights of a group of people could be displayed on a scatter plot.⁵

Similarity transformation. A rigid motion followed by a dilation

Tape diagram. A drawing that looks like a segment of tape, used to illustrate number relationships. Also known as a strip diagram, bar model, fraction strip, or length model.

Terminating decimal. A decimal is called terminating if its repeating digit is 0.

Third quartile. For a data set with median *M*, the third quartile is the median of the data values greater than *M*. Example: For the data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the third quartile is 15. *See also:* median, first quartile, interquartile range.

Transitivity principle for indirect measurement. If the length of object A is greater than the length of object B, and the length of object B is greater than the length of object C, then the length of object A is greater than the length of object C. This principle applies to measurement of other quantities as well.

Uniform probability model. A probability model which assigns equal probability to all outcomes. *See also:* probability model.

Vector. A quantity with magnitude and direction in the plane or in space, defined by an ordered pair or triple of real numbers.

Visual fraction model. A tape diagram, number line diagram, or area model.

Whole numbers. The numbers 0, 1, 2, 3,

⁵Adapted from Wisconsin Department of Public Instruction, op. cit.

Table 1. Common addition and subtraction situations.⁶

	Result Unknown	Change Unknown	Start Unknown
Add to	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? 2 + 3 = ?	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? 2 + ? = 5	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? ? + 3 = 5
Take from	Five apples were on the table. I ate two apples. How many apples are on the table now? 5-2=?	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? 5 – ? = 3	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before?
	Total Unknown	Addend Linknown	? - 2 = 3
		Addend Unknown	Both Addends Unknown ²
Put Together/ Take Apart ²	apples are on the table. How many apples are on the table?	Three are red and the rest are green. How many apples are green?	How many can she put in her red vase and how many in her blue vase?
	3 + 2 = ?	3 + ? = 5, 5 – 3 = ?	5 = 0 + 5, 5 = 5 + 0 5 = 1 + 4, 5 = 4 + 1 5 = 2 + 3, 5 = 3 + 2
	Difference Unknown	Bigger Unknown	Smaller Unknown
Compare ³	("How many more?" version):	(Version with "more"):	(Version with "more"):
	Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy?	Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have?	Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have?
	("How many fewer?" version):	(Version with "fewer"):	(Version with "fewer"):
	Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie?	Lucy has 3 fewer apples than Julie. Lucy has two apples. How many apples does Julie have?	Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have?
	2 + ? = 5, 5 – 2 = ?	2 + 3 = ?, 3 + 2 = ?	5 – 3 = ?, ? + 3 = 5

¹These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the equal sign, help children understand that the = sign does not always mean makes or results in but always does mean is the same number as. ²Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small numbers less than or equal to 10.

³For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the bigger unknown and using less for the smaller unknown). The other versions are more difficult.

	Unknown Product	Group Size Unknown ("How many in each group?" Division)	Number of Groups Unknown ("How many groups?" Division)
	3 x 6 = ?	3 x ? = 18, and 18 ÷ 3 = ?	? x 6 = 18, and 18 ÷ 6 = ?
Equal Groups	There are 3 bags with 6 plums in each bag. How many plums are there in all?	If 18 plums are shared equally into 3 bags, then how many plums will be in each bag?	If 18 plums are to be packed 6 to a bag, then how many bags are needed?
	<i>Measurement example.</i> You need 3 lengths of string, each 6 inches long. How much string will you need altogether?	<i>Measurement example.</i> You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?	<i>Measurement example</i> . You have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have?
Arrays,⁴ Area ⁵	There are 3 rows of apples with 6 apples in each row. How many apples are there? <i>Area example.</i> What is the area of a 3 cm by 6 cm rectangle?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row? <i>Area example.</i> A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?	If 18 apples are arranged into equal rows of 6 apples, how many rows will there be? Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?
Compare	A blue hat costs \$6. A red hat costs 3 times as much as the blue hat. How much does the red hat cost?	A red hat costs \$18 and that is 3 times as much as a blue hat costs. How much does a blue hat cost?	A red hat costs \$18 and a blue hat costs \$6. How many times as much does the red hat cost as the blue hat?
	Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?	Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?	Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?
General	a × b = ?	a × ? = p, and p ÷ a = ?	? × b = p, and p ÷ b = ?

Table 2. Common multiplication and division situations.⁷

⁴The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable.

⁵Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations.

⁷The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples.

Table 3. The properties of operations. Here *a*, *b* and *c* stand for arbitrary numbers in a given number system. The properties of operations apply to the rational number system, the real number system, and the complex number system.

(a + b) + c = a + (b + c)	Associative property of addition
a + b = b + a	Commutative property of addition
a+0=0+a=a	Additive identity property of 0
For every a there exists $-a$ so that $a + (-a) = (-a) + a = 0$.	Existence of additive inverses
$(a \times b) \times c = a \times (b \times c)$	Associative property of multiplication
$a \times b = b \times a$	Commutative property of multiplication
$a \times 1 = 1 \times a = a$	Multiplicative identity property of 1
For every $a \neq 0$ there exists $1/a$ so that $a \ge 1/a \ge 1/a \ge a = 1$.	Existence of multiplicative inverses
$a \times (b + c) = a \times b + a \times c$	Distributive property of multiplication over addition

Table 4. The properties of equality. Here *a*, *b* and *c* stand for arbitrary numbers in the rational, real, or complex number systems.

Reflexive property of equality	a = a
Symmetric property of equality	If $a = b$, then $b = a$.
Transitive property of equality	If $a = b$ and $b = c$, then $a = c$.
Addition property of equality	If $a = b$, then $a + c = b + c$.
Subtraction property of equality	If $a = b$, then $a - c = b - c$.
Multiplication property of equality	If $a = b$, then $a \times c = b \times c$.
Division property of equality	If $a = b$ and $c \neq 0$, then $a \div c = b \div c$.
Substitution property of equality	If a = b, then b may be substituted for a in any expression containing a.

Table 5. The properties of inequality. Here *a*, *b* and *c* stand for arbitrary numbers in the rational or real number systems.

Exactly one of the following is true: a < b, a = b, a > b. If a > b and b > c then a > c. If a > b, then b < a. If a > b, then -a < -b. If a > b, then $a \pm c > b \pm c$. If a > b and c > 0, then $a \times c > b \times c$. If a > b and c < 0, then $a \times c > b \times c$. If a > b and c > 0, then $a \pm c > b \pm c$. If a > b and c < 0, then $a \pm c > b \pm c$. If a > b and c < 0, then $a \pm c > b \pm c$. If a > b and c < 0, then $a \pm c > b \pm c$. If a > b and c < 0, then $a \pm c > b \pm c$.